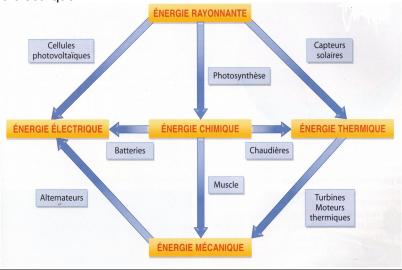
Production et stockage d'énergie électrique

ACTIVITÉ 🛱 p. 114-115	
Réponses :	
ACTIVITÉ 🂢 p. 118	
Réponses :	
ACTIVITÉ ∰ p. 116-117	
Réponses :	



MODÈLES

- Les réactions d'oxydoréduction sont des réactions électrochimiques, c'est-à-dire qu'elles se produisent par échange d'électrons. Ces réactions chimiques peuvent être utilisées pour générer un courant électrique.

MÉTHODES

- Il est possible de décrire une chaîne de transformations énergétique depuis les différentes sources primaires d'énergie jusqu'à l'énergie électrique.

CONNAISSANCES

- Trois méthodes permettent d'obtenir de l'énergie électrique sans nécessiter de combustion :
- la conversion d'énergie mécanique, soit directe (dynamos, éoliennes, hydroliennes, barrages hydroélectriques), soit indirecte à partir d'énergie thermique (centrales nucléaires, centrales solaires thermiques, géothermie);
 - la conversion de l'énergie radiative reçue du Soleil (panneaux photovoltaïques) ;
 - la conversion électrochimique (piles ou accumulateurs conventionnels, piles à hydrogène).
- Ces méthodes sans combustion ont néanmoins un impact sur l'environnement et la biodiversité ou présentent des risques spécifiques (pollution chimique, déchets radioactifs, accidents industriels...).
- Pour faire face à l'intermittence liée à certains modes de production ou à la consommation, l'énergie électrique doit être convertie sous une forme stockable :
 - énergie chimique (accumulateurs);
 - énergie potentielle (barrages);
 - énergie électromagnétique (super-capacités).

07

APPLICATIONS

Réponses :	