I. Ondes

1.3. Modèles ondulatoire et particulaire de la lumière

- PRÉPARER LE COURS (À faire à la maison)

- 🖵 La lumière, une longue histoire : http://www.youtube.com/watch?v=L5B3frVR8LM
- L'électron dans tous ses états : http://www.youtube.com/watch?v=9Uf LNULgeo
- - Créateur de lumière : http://www.youtube.com/watch?v=o6OTAr1D-2E
- 💥 Cours p. 365-367

(À savoir)

1- G Le produit de la **fréquence** ν (en Hz) et de la **longueur d'onde** λ (en m) d'une onde électromagnétique est égal à la **célérité** c (en m.s⁻¹) dans le vide (appelée vitesse de la lumière).

$c = \lambda \times \nu$

Nom : Fréquence Symbole : ν (lettre grecque nu) ou f Unités : Hz (Hertz)

Nom : Longueur d'onde Symbole : λ (lettre grecque lambda) Unités : m (et multiples)

Nom : Célérité dans le vide ou vitesse de la lumière **Symbole** : c ou c₀ **Unités** : m.s⁻¹

2- Il existe différents domaines d'ondes électromagnétiques définies par leurs fréquences ou leurs longueurs d'onde dans le vide.

Exemple: http://physique.ostralo.net/oem_frise

- 3- La **lumière** est une onde électromagnétique appartenant au **domaine du visible** (captable par un œil humain sans défauts).
- 4- Illumière se définit aussi comme étant un déplacement de particules appelées photons.
- 5- IIII Une radiation lumineuse de **fréquence ν** et de **longueur d'onde** dans le vide λ est un ensemble de photons transportant chacun l**'énergie E** résultat du produit de la fréquence par la **constante de Planck** h ·

$$E = h \times \nu = h \times \frac{c}{\lambda}$$

- 6- La lumière est à la fois une onde et un flux de particules. son aspect ondulatoire ou particulaire se manifeste selon l'expérience réalisée. On appelle ce concept la **dualité onde-corpuscule**.
- 7- # L'énergie d'un atome est quantifiée : elle ne peut prendre que certaines valeurs.
- 8- ELE diagramme d'énergie d'un atome indique les valeurs d'énergie que peut prendre un atome. Dans son état fondamental, l'atome est à son niveau d'énergie le plus bas. Aux autres niveaux, l'atome est dans un état dit excité.
- 9- III Un atome peut **absorber** un photon si l'énergie du photon correspond à la **différence** ΔE entre les **énergies** du **niveau initial** E_i et du **niveau final** E_f. On observe alors une raie sombre de **longueur d'onde** λ sur le spectre d'absorption de l'atome.
- 10- III Un atome dans un état excité d'énergie E_i retourne dans l'état fondamental ou dans un état inférieur E_f en émettant un photon d'énergie ΔE. On observe alors une raie colorée de longueur d'onde λ sur le spectre d'émission de l'atome.
- 11- 🅮 Pour une **absorption** comme pour une **émission** d'un photon par un atome :

$$\Delta E = |E_f - E_i| = E_{photon} = h \nu = h \frac{c}{\lambda}$$
 et $\lambda = \frac{hc}{|E_f - E_i|}$

I. Ondes

1.3. Modèles ondulatoire et particulaire de la lumière

B COURS (À savoir)

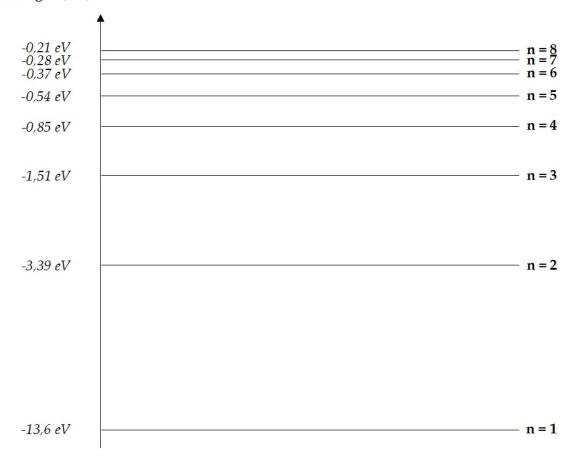
12- La célérité d'une onde électromagnétique dans le vide (vitesse de la lumière) c a été mesurée :

$$c = 2,99792458 \text{ m.s}^{-1} \simeq 3.10^8 \text{ m.s}^{-1} = 300 000 \text{ km.s}^{-1}$$

13- 🔂 Le domaine du visible est définit par ses bornes en longueur d'onde et en fréquence :

380 nm <
$$\lambda_{visible}$$
 < 780 nm \Leftrightarrow 8.10¹⁴ Hz > $\nu_{visible}$ > 4.10¹⁴ Hz

14- 12 La constante de Planck h a été mesurée :


$$\mathbf{h} = 6,62607015.10^{-34} \text{ J.s} \simeq 6,63.10^{-34} \text{ J.s}$$

15- L'électronvolt (noté eV) est une unité d'énergie utilisée pour les énergies atomiques ou plus généralement des particules :

1 eV =
$$1,602176634.10^{-19}$$
 J $\simeq 1,60.10^{-19}$ J

 \bigcirc Exemple: Diagramme d'énergie de l'atome d'hydrogène (H), émission et absorption d'un photon correspondant au passage du niveau n = 2 au niveau n = 3 et n = 2 au niveau n = 4 (raies de Balmer).

Énergie (eV)

Calculs des longueurs d'ondes associées : ______

I. Ondes

1.3. Modèles ondulatoire et particulaire de la lumière

						∌ CC	URS	(À sa	voir)						
	Spectre d'absorption					Spectre d'émission							1		
								ļ.,,.							
400	450	500	550	600	650	700	750	400	450	500	550	600	650	700	750
Longueur d'onde (nanomètres) Longueur d'onde (nanomètres)															
Spec	tres d'é	émissic	n et d'a	absorp	tion : h	ttp://ph	ysique	.ostralo	.net/sp	ectre_	em_ab	S			
Spec spectrur			oir : ht	tps://pł	net.colo	orado.e	du/sim	s/html/	blackbo	ody-sp	ectrum/	/latest/	blackb	ody-	

☆ APPLIQUER LE COURS (À faire à la maison)

- 💥 Exercices p. 370-371 et exercice corrigé p. 372
- Exercices p 373-374 et si possible exercices p. 375

⊗ S'ENTRAÎNER				
- 👑 Fiche Modèle ondulatoire et particulaire de la lumière				
	• • •			
	• • •			
	• • •			
	• • •			
	• • •			
	• • •			
	• • •			
	• • • •			
	• • • •			
	• • • •			
	• • • •			
	• • • •			
	• • • •			
	• • • •			
	• • • •			
	• • • •			
	• • • •			
	• • • •			

1.3. Modèles ondulatoire et particulaire de la lumière

1	2
