II. Constitution et transformation de la matière

II.3. La liaison chimique PRÉPARER LE COURS

21

Motions étudiées au collège : Échelle microscopique : formule chimique d'une molécule, formules O₂ , H₂ , N₂ , H₂O, CO₂.

Cours p.111-113

OBSERVATIONS

Le comportement des métaux alcalins : https://www.youtube.com/watch?v=PG-mHrquj1k

Le comportement des halogènes : https://www.youtube.com/watch?v=u2ogMUDBaf4

Tests d'identifications par précipités : https://www.youtube.com/watch?v=Odg-8SXqOpo

Quels sont les propriétés similaires des alcalins ? De même pour les halogènes ? Comment tester la présence d'ions en solution ?

MODÈLES

Le schéma de Lewis : https://www.youtube.com/watch?v=fGT7gTZSV-o (0 min 44 s – 5 min 33 s)

Exemples de schémas de Lewis : https://www.youtube.com/watch?v=fGT7gTZSV-o (7 min 2 s – 8 min 36 s)

https://www.youtube.com/watch?v=fGT7gTZSV-o

(9 min 10 s – 10 min 04 s)

https://www.youtube.com/watch?v=fGT7gTZSV-o

(10 min 38 s – 11 min 35 s)

https://www.youtube.com/watch?v=S0JIGq1JZyk

(0 min 7 s - 3 min 42 s)

https://www.youtube.com/watch?v=S0JIGq1JZyk

(6 min 34 s – 8 min 26 s)

Retrouver grâce à la configuration électronique le nombre d'électrons de valence du carbone (Z = 6), de l'azote (Z = 7) et de l'oxygène (Z = 8). Comment faire le schéma de Lewis de la molécule de méthane CH_4 , d'eau H_2O , d'ammoniac NH_3 et de dioxyde de carbone CO_2 ?

II.3. La liaison chimique

MODÈLES

1. Les **gaz nobles** sont situés dans la dernière colonne du tableau périodique. Leur configuration électronique leur confère une grande **stabilité**.

1 H 1s ¹							₂ He 1s²
₃ Li 1s² 2s¹	₄Be 1s² 2s²	₅ B 1s² 2s²2p¹	₆ C 1s² 2s²2p²	₇ N 1s² 2s²2p³	80 1s² 2s²2p⁴	₉ F 1s² 2s²2p⁵	₁₀ Ne 1s² 2s²2p ⁶
11 Na 1s² 2s²2p ⁶ 3s¹	12 Mg 1s² 2s²2p ⁶ 3s²	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	1s² 2s²2p ⁶ 3s²3p²	1s ² 2s ² 2p ⁶ 3s ² 3p ³	1s² 2s²2p ⁶ 3s²3p⁴	₁₇ CI 1s² 2s²2p ⁶ 3s²3p⁵	18 ² 28 ² 2p ⁶ 38 ² 3p ⁶

Famille des métaux alcalins

Famille des halogènes

Famille des gaz nobles

2. Les atomes autres que les gaz nobles se stabilisent en **gagnant** ou **perdant** des électrons afin d'acquérir la **configuration électronique du gaz noble** le plus proche dans le tableau périodique.

Exemples : Noms et configurations électroniques de quelques ions monoatomiques courants.

Fluorure	F ⁻	Ion magnésium	Mg ²⁺	
Chlorure	Cl⁻	lon calcium	Ca ²⁺	
Ion hydrogène	H⁺	Ion fer (II)	Fe ²⁺	
lon sodium	Na⁺	Ion cuivre (II)	Cu ²⁺	
Ion potassium	K⁺	lon aluminium	Al ³⁺	
lon oxygène	O ²⁻	Ion fer (III)	Fe³+	

3. La matière est **électriquement neutre**. Il y a autant de charges positives que de charges négatives dans une solution ionique ou dans un solide ionique.

Exemple: Dans une solution de chlorure de fer, il y a 3 fois plus d'ions Cl⁻ que d'ions Fe³⁺.

4. Afin d'acquérir la configuration électronique des gaz nobles, les atomes mettent en commun des paires d'électrons et forment des **liaisons covalentes** (ou de valence) appelées aussi **doublets liants**.

Exemple: La configuration électronique du carbone (C) est $1s^2 2s^2 2p^2$. Il a donc 4 électrons de valence (sur la couche 2). La configuration électronique du gaz noble le plus proche est $1s^2 2s^2 2p^6$ appartenant au Néon (Ne). Il a 8 électrons de valence. Le carbone établira ainsi 8 - 4 = 4 liaisons covalentes.

II.3. La liaison chimique

⊞ COURS

MODÈLES

5. Les électrons de la couche de valence (dernière couche occupée) non engagés dans des liaisons se rassemblent par paires pour former des **doublets non liants**.

Exemple : L'atome d'oxygène (O) a 6 électrons de valence. Il a ainsi 8 – 6 = 2 électrons engagés dans des liaisons covalentes.

Les 4 électrons restant formeront alors 2 doublets non liants.

6. Dans le **schéma de Lewis** d'une molécule, tous les doublets sont représentés par des tirets.

Exemples : Schémas de Lewis de quelques molécules courantes.

Molécule	Formule brute	Schéma de Lewis		
Eau	H₂O			
Chlorure d'hydrogène	HCI			
Dihydrogène	H ₂			
Diazote	N_2			
Dioxyde de carbone	CO ₂			

7. On calcule la masse d'une molécule à partir de sa **formule brute** et de la masse des atomes qui la composent.

Exemple : La masse d'une molécule d'eau H_2O est égale à la somme des masses de deux atomes d'hydrogène et de la masse d'un atome d'oxygène. $m(H_2O) = 2 \times m(H) + m(O) = 2 \times 1,7 \times 10^{-27} + 2,7 \times 10^{-26} = 3,0 \times 10^{-26} \text{ kg}$

VOCABULAIRE

8. Les ions négatifs sont appelés **anions** et les ions positifs sont appelés **cations**.

GRANDEURS

9. Une molécule est plus stable que les atomes qui la forment pris séparément. L'énergie de liaison entre deux atomes est l'énergie nécessaire pour rompre cette liaison. L'énergie est exprimée en Joule (J).

Exemple : L'énergie à fournir pour dissocier une molécule de dioxyde de carbone correspond à la rupture de deux liaisons C=O.

II.3. La liaison chimique

APPLICATIONS

♦ Exercices du livre

p.114-121

Fiche Molécules et ions

Réponses :