
ancien programme

Bac S 2010 Centres étrangers Correction © http://labolycee.org EXERCICE III. TITRAGE DES IONS DANS UNE EAU MINÉRALE (4 points)

1.2.1. L'espèce dosée (Cl⁻) réagit avec l'espèce titrante (Ag⁺), on procède à un **titrage direct**. **1.2.2.** L'état initial est fictif : on imagine que l'on a versé le volume $V_{2\acute{e}q}$ de la solution de nitrate

d'argent et que la réaction n'a pas commencé.

équation chimique		Ag⁺(aq)	+	Cl ⁻ (aq)	=	AgCl(s)
État du système	Avancement (mol)	Quantités de matière (mol)				
État initial	0	$n_{2\acute{e}q} = c_2.V_{2\acute{e}q}$		$n_1 = c_1 . V_1$		0
En cours de transformation	х	n _{2éq} – x		n ₁ – x		Х
À l'équivalence	Xéq	$c_2.V_{2\acute{e}q}-x_{\acute{E}q}=0$		$n_1 - x_{\text{\'eq}} = 0$		XÉq

- **1.2.3.** À l'équivalence, les réactifs sont totalement consommés : $n_1 x_{\text{\'eq}} = 0$ soit $n_1 = x_{\text{\'eq}}$, et $n_{2\text{\'eq}} x_{\text{\'eq}} = 0$ avec $n_1 = x_{\text{\'eq}}$, alors $n_{2\text{\'eq}} n_1 = 0$, finalement $n_{2\text{\'eq}} = n_1$.
- **1.3.** L'équivalence correspond au point d'intersection des deux segments de droite. L'abscisse du point d'intersection est égale à $V_{2\acute{e}q}$. On lit sur la figure 2, $V_{2\acute{e}q}$ = 11,4 mL.

1.4. D'après 1.2.3., on a
$$n_{2\acute{e}q}=n_1$$
 , soit $c_2.V_{2\acute{e}q}=c_1.V_1$ donc $c_1=\frac{c_2.V_{2\acute{e}q}}{V_1}$

$$c_1 = \frac{2,00 \times 10^{-2} \times 11,4}{20.0} = 1,14 \times 10^{-2} \text{ mol.L}^{-1}$$

1.5.
$$t_1 = c_1.M(CI)$$

 $t_1 = 1,14 \times 10^{-2} \times 35,5 = 0,405 \text{ g.L}^{-1} = 405 \text{ mg.L}^{-1}$

2. Deuxième partie : titrage complexométrique des ions calcium

2.1. Les ions Y^{4-} réagissent avec les ions Ca^{2+} ET avec les ions Mg^{2+} . À l'équivalence, on a versé autant de Y^{4-} qu'il y avait d'ions Ca^{2+} et d'ions Mg^{2+} . $n'_{2\acute{e}q} = n_i(Ca^{2+}) + n_i(Mg^{2+})$

$$n'_{2\acute{e}q} = n_i(Ca^{2+}) + n_i(Mg^{2+})$$

2.2.
$$c'_{2\acute{e}q}.V'_{2\acute{e}q} = [Ca^{2+}].V'_{1} + [Mg^{2+}].V'_{1}$$

$$[Ca^{2+}] + [Mg^{2+}] = \frac{c'_{2}.V'_{2\acute{e}q}}{V'_{1}}$$

2.3.
$$[Ca^{2+}] = \frac{C_2 \cdot V_{2\acute{e}q}}{V_1} - [Mg^{2+}]$$

$$\frac{t_{\text{Ca}^{2+}}}{\text{M(Ca)}} = \frac{c_2^{'}.V_{2\text{\'eq}}^{'}}{V_1^{'}} - \frac{t_{\text{Mg}^{2+}}}{\text{M(Mg)}}$$

$$t_{Ca^{2+}} = (\frac{c_2.V_{2\acute{e}q}}{V_1} - \frac{t_{Mg^{2+}}}{M(Mg)}).M(Ca)$$

$$t_{Ca^{2+}} = \left(\frac{5,0 \times 10^{-3} \times 10,8}{20,0} - \frac{11 \times 10^{-3}}{24,3}\right) \times 40,1$$

$$t_{Ca^{2+}} = (2.7 \times 10^{-3} - 0.4526 \times 10^{-3}) \times 40.1 = 2.2 \times 10^{-3} \times 40.1 = 0.090 \text{ g.L}^{-1} =$$
90 mg.L⁻¹