{"cells":[{"cell_type":"markdown","metadata":{"id":"ldzYCJVRXX3-"},"source":["#TP 2 : Dosage par étalonnage conductimétrique"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IlbjDS4jXTAw"},"outputs":[],"source":["#bibliothèques\n","import numpy as np\n","import matplotlib.pyplot as plt\n","from math import*"]},{"cell_type":"markdown","metadata":{"id":"IfIGP9bHXTA1"},"source":["# Réponse aux questions préliminaires"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":761,"status":"ok","timestamp":1725566308216,"user":{"displayName":"Physique Chimie Val d'Argens","userId":"11438166584008528880"},"user_tz":-120},"id":"C5thA9htXTA3","outputId":"d2dc11e3-caca-4293-ae0b-8ea03340f1e4"},"outputs":[{"output_type":"stream","name":"stdout","text":["c serum= 0.1540041067761807 c theo= 0.007700205338809035\n"]}],"source":["#parametres\n","m=0.5\n","M=58.44\n","#calcul de la concentration du sérum\n","c_serum=0.9/(0.1*M)\n","c_theo=c_serum/20\n","print('c serum=',c_serum,'c theo=',c_theo)"]},{"cell_type":"markdown","metadata":{"id":"X9bzftfBXTA5"},"source":["$c_{serum}=1,54 \\times 10^{-1} \\, \\mathrm{mol.L^{-1}}$\n","$c_{theo}=7,70 \\times 10^{-3} \\, \\mathrm{mol.L^{-1}}$\n","\n","2. Sans diluer nous ne sommes pas dans le domaine de valididté de la loi de Kohlrausch\n","\n","3. $\\sigma=(\\lambda_1+\\lambda_2)\\times C_0$\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":5,"status":"ok","timestamp":1725566308217,"user":{"displayName":"Physique Chimie Val d'Argens","userId":"11438166584008528880"},"user_tz":-120},"id":"Vgcd_s7KXTA6","outputId":"92fe9047-8a90-42d6-eefc-ec6acca7d114"},"outputs":[{"output_type":"stream","name":"stdout","text":["Concentration des solutions filles\n","[0.00684463 0.00342231 0.01368925 0.00171116 0.00855578 0.01711157]\n"]}],"source":["VmereSi=np.array([10,10,20,5,25,25])*1e-3\n","VfilleSi=np.array([50,100,50,100,100,50])*1e-3\n","VmereS0=250.*1e-3\n","\n","ci=m*VmereSi/(VmereS0*VfilleSi*M)\n","print('Concentration des solutions filles')\n","print(ci)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":4,"status":"ok","timestamp":1725566308217,"user":{"displayName":"Physique Chimie Val d'Argens","userId":"11438166584008528880"},"user_tz":-120},"id":"IAu5oaLbXTA6","outputId":"d1578615-67b0-488f-bbdc-c9fcc9886426"},"outputs":[{"output_type":"stream","name":"stdout","text":["0.034223134839151265\n"]}],"source":["#calcul de c0\n","c0=m/(VmereS0*M)\n","print(c0)"]},{"cell_type":"markdown","metadata":{"id":"L-iMM-x2XTA7"},"source":["7. $c_0=3,4 \\times 10^{-2} \\, \\mathrm{mol.L^{-1}}$"]},{"cell_type":"markdown","metadata":{"id":"teHtNfpUXTA8"},"source":["# Courbe d'étalonnage"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":453},"executionInfo":{"elapsed":842,"status":"ok","timestamp":1725566309057,"user":{"displayName":"Physique Chimie Val d'Argens","userId":"11438166584008528880"},"user_tz":-120},"id":"XScLHZwAXTA9","outputId":"616e0011-c534-4900-ef6c-577a6565359b"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAloAAAG0CAYAAADq/YmFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGYElEQVR4nO3de3xU1b338W8SMpNwSQIiuUCAWCIIIlcTg/QEIRqVWnLq44VjNfKkBi09iIgUWgGvDQWtHpAjIgjaqlxK1VYQSwNWhRARErmKQIOIkCBiJoBAJPN7/sjD1CEJJJjNkPB5v177Nc5av732WhPNfN2zZyfIzEwAAACod8GBngAAAEBjRdACAABwCEELAADAIQQtAAAAhxC0AAAAHELQAgAAcAhBCwAAwCEELQAAAIc0CfQELmRer1d79+5VixYtFBQUFOjpAACAWjAzHTp0SHFxcQoOPv05K4JWAO3du1fx8fGBngYAADgLX3zxhdq1a3faGoJWALVo0UJS5Q8qIiIiwLMBAAC1UVZWpvj4eN/7+OkQtALo5MeFERERBC0AABqY2lz2w8XwAAAADiFoAQAAOISgBQAA4BCu0TrPmZlOnDihioqKQE8F50BISIiaNGnC7T4AoJEgaJ3HysvLtW/fPn377beBngrOoaZNmyo2NlYulyvQUwEA/EAErfOU1+tVUVGRQkJCFBcXJ5fLxVmORs7MVF5erq+++kpFRUVKTEw8443wAADnN4LWeaq8vFxer1fx8fFq2rRpoKeDcyQ8PFyhoaH6/PPPVV5errCwsEBPCQDwA/C/y+c5zmhcePiZA0DjwW90AAAAhxC00OC99957ev755wM9DQAAqiBooUH717/+pZ///Oe68sorz1i7a9cuBQUFqbCw0PmJAQAgLoZHA3b8+HHdfvvtevHFF9W3b98z1sfHx2vfvn1q3br1OZgdACDQ9uyRtm+XEhOldu0CMweCFhost9utjz76qFa15eXlcrlciomJcXhWAIDzwZw5Una25PVKwcHSrFlSVta5nwcfHV4g9uyRVq6sfHSa1+tVTk6OEhISFB4erh49eujPf/6zzExpaWlKT0+XmUmSDh48qHbt2mnixImSKq+3CgoK0pIlS3TFFVcoLCxMV111lTZt2uR3jA8//FA//vGPFR4ervj4eI0cOVJHjhzx9Xfs2FGPP/647rrrLkVERCg7O7vajw43bdqkG264Qc2bN1d0dLTuvPNOHThwwNc/YMAAjRw5UmPHjlWrVq0UExOjRx55xG8upaWlGj58uKKjoxUWFqbLL79cb7/9dq3nCgCoX3v2/DtkSZWPw4efm/fAUxG0LgBz5kgdOkgDB1Y+zpnj7PFycnL0yiuvaObMmdq8ebMeeOAB/fznP9f777+vl19+WWvXrtW0adMkSffee6/atm3rC1onPfTQQ3r66ae1du1aXXzxxbrpppv03XffSZJ27typ66+/XjfffLM2bNigBQsW6MMPP9SvfvUrvzGeeuop9ejRQwUFBZowYUKVeZaWlmrgwIHq1auXPv74Yy1btkwlJSW69dZb/epefvllNWvWTPn5+ZoyZYoee+wxLV++XFJlqLzhhhu0atUq/elPf9KWLVs0efJkhYSE1GmuAID6s337v0PWSRUV0o4dAZiMIWA8Ho9JMo/HU6Xv6NGjtmXLFjt69OgPOsYXX5gFB5tJ/95CQirbnXDs2DFr2rSprV692q89KyvLhg4damZmCxcutLCwMBs3bpw1a9bMPvvsM1/dypUrTZLNnz/f1/b1119beHi4LViwwDdWdna23/gffPCBBQcH+16vDh06WEZGhl9NUVGRSbKCggIzM3v88cftuuuu86v54osvTJJt27bNzMxSU1Otf//+fjVXXnml/frXvzYzs3fffdeCg4N99aeqzVxPVV8/ewC4UDn93ne69+9TcY1WI3e6VO/EhYE7duzQt99+q2uvvdavvby8XL169ZIk3XLLLXrjjTc0efJkPf/880pMTKwyTkpKiu+fW7Vqpc6dO2vr1q2SpE8++UQbNmzQq6++6qsxM9+fLbrssssk6YwXyH/yySdauXKlmjdvXqVv586duvTSSyVJV1xxhV9fbGys9u/fL0kqLCxUu3btfLXVHaM2cwUA1J927SqvyRo+vPI9LyREeuGFwFwQT9Bq5BITKy8C/H7YCgmROnVy5niHDx+WJC1ZskRt27b163O73ZKkb7/9VuvWrVNISIi2b99+VscYPny4Ro4cWaWvffv2vn9u1qzZGce56aab9Pvf/75KX2xsrO+fQ0ND/fqCgoLk/f8vaHh4eL3MFQBQv7KypPT0yhMLnTrxrUM45Fyn+q5du8rtdmv37t1KTU2ttubBBx9UcHCw3nnnHd14440aPHiwBg4c6FezZs0aXxD55ptv9Nlnn/nO/vTu3VtbtmxRpx+YFnv37q3FixerY8eOatLk7P5TuOKKK7Rnzx599tln1Z7Vqq+5AgDqrl27wAWskwhaF4BzmepbtGihMWPG6IEHHpDX61X//v3l8Xi0atUqRUREqHXr1nrppZeUl5en3r1766GHHlJmZqY2bNigli1b+sZ57LHHdNFFFyk6Olq//e1v1bp1a2VkZEiSfv3rX+uqq67Sr371K/3iF79Qs2bNtGXLFi1fvlzPPfdcrec6YsQIvfjiixo6dKjvW4U7duzQ/PnzNXv2bN8F7aeTmpqq//iP/9DNN9+sP/zhD+rUqZM+/fRTBQUF6frrr6+3uQIAGia+dXiBaNdOGjDg3CT7xx9/XBMmTFBOTo4uu+wyXX/99VqyZIk6duyorKwsPfLII+rdu7ck6dFHH1V0dLTuvfdevzEmT56s+++/X3369FFxcbH+9re/yeVySao8i/TPf/5Tn332mX784x+rV69emjhxouLi4uo0z7i4OK1atUoVFRW67rrr1L17d40aNUpRUVF1+sPOixcv1pVXXqmhQ4eqa9euGjt2rCoqKup1rgCAhinI7P/f0AjnXFlZmSIjI+XxeBQREeHXd+zYMRUVFSkhIUFhYWEBmuG599577+maa67RN998o6ioqEBPJyAu1J89ADQUp3v/PhVntAAAABxC0AIAAHAIF8PjvDJgwADxaTYAoLHgjBYAAIBDCFoAAAAOIWid57yn/v0cNHr8zAGg8eAarfOUy+VScHCw9u7dq4svvlgul0tBQUGBnhYcZGYqLy/XV199peDgYN99wwAADVfAg9aMGTM0depUFRcXq0ePHpo+fbqSkpJqrF+0aJEmTJigXbt2KTExUb///e914403+vrNTJMmTdKLL76o0tJSXX311VX+cPGTTz6pJUuWqLCwUC6XS6WlpX7HmDdvnoYNG1bt8UtKStSmTRvf/Z5OtW/fPsXExNTxVagqODhYCQkJ2rdvn/bu3fuDx0PD0bRpU7Vv375ON00FAJyfAhq0FixYoNGjR2vmzJlKTk7Ws88+q/T0dG3btk1t2rSpUr969WoNHTpUOTk5+slPfqLXXntNGRkZWr9+vS6//HJJ0pQpUzRt2jS9/PLLSkhI0IQJE5Senq4tW7b4bv5YXl6uW265RSkpKZozZ06V49x22226/vrr/druvvtuHTt2rMq8tm3b5nezsurmfbZcLpfat2+vEydO+O40jsYtJCRETZo04ewlADQWFkBJSUk2YsQI3/OKigqLi4uznJycautvvfVWGzx4sF9bcnKyDR8+3MzMvF6vxcTE2NSpU339paWl5na77fXXX68y3ty5cy0yMvKM89y/f7+FhobaK6+84mtbuXKlSbJvvvnmjPvXxOPxmCTzeDxnPQYAADi36vL+HbDPJsrLy7Vu3TqlpaX52oKDg5WWlqa8vLxq98nLy/Orl6T09HRffVFRkYqLi/1qIiMjlZycXOOYtfHKK6+oadOm+j//5/9U6evZs6diY2N17bXXatWqVacd5/jx4yorK/PbAABA4xWwoHXgwAFVVFQoOjrarz06OlrFxcXV7lNcXHza+pOPdRmzNubMmaP/+q//Unh4uK8tNjZWM2fO1OLFi7V48WLFx8drwIABWr9+fY3j5OTkKDIy0rfFx8ef9ZwAAMD5L+AXw5/v8vLytHXrVv3xj3/0a+/cubM6d+7se96vXz/t3LlTzzzzTJXak8aPH6/Ro0f7npeVlRG2AABoxAJ2Rqt169YKCQlRSUmJX3tJSUmN39qLiYk5bf3Jx7qMeSazZ89Wz5491adPnzPWJiUlaceOHTX2u91uRURE+G0AAKDxCljQcrlc6tOnj3Jzc31tXq9Xubm5SklJqXaflJQUv3pJWr58ua8+ISFBMTExfjVlZWXKz8+vcczTOXz4sBYuXKisrKxa1RcWFio2NrbOxwEAAI1TQD86HD16tDIzM9W3b18lJSXp2Wef1ZEjR3z3sLrrrrvUtm1b5eTkSJLuv/9+paam6umnn9bgwYM1f/58ffzxx5o1a5YkKSgoSKNGjdITTzyhxMRE3+0d4uLilJGR4Tvu7t27dfDgQe3evVsVFRUqLCyUJHXq1EnNmzf31S1YsEAnTpzQz3/+8ypzf/bZZ5WQkKBu3brp2LFjmj17tlasWKG///3vDr1aAACgoQlo0Lrtttv01VdfaeLEiSouLlbPnj21bNky38Xsu3fv9rtpY79+/fTaa6/p4Ycf1m9+8xslJibqzTff9N1DS5LGjh2rI0eOKDs7W6Wlperfv7+WLVvmu4eWJE2cOFEvv/yy73mvXr0kSStXrtSAAQN87XPmzNHPfvYzRUVFVZl7eXm5HnzwQX355Zdq2rSprrjiCv3jH/+o9iamAADgwhRkZhboSVyoysrKFBkZKY/Hw/VaAAA0EHV5/+ZvfAAAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDAh60ZsyYoY4dOyosLEzJycn66KOPTlu/aNEidenSRWFhYerevbuWLl3q129mmjhxomJjYxUeHq60tDRt377dr+bJJ59Uv3791LRpU0VFRVV7nKCgoCrb/Pnz/Wree+899e7dW263W506ddK8efPqvH4AANB4BTRoLViwQKNHj9akSZO0fv169ejRQ+np6dq/f3+19atXr9bQoUOVlZWlgoICZWRkKCMjQ5s2bfLVTJkyRdOmTdPMmTOVn5+vZs2aKT09XceOHfPVlJeX65ZbbtF999132vnNnTtX+/bt820ZGRm+vqKiIg0ePFjXXHONCgsLNWrUKP3iF7/Qu++++8NeFABAg7Vnj7RyZeUjIEmyAEpKSrIRI0b4nldUVFhcXJzl5ORUW3/rrbfa4MGD/dqSk5Nt+PDhZmbm9XotJibGpk6d6usvLS01t9ttr7/+epXx5s6da5GRkdUeS5K98cYbNc597Nix1q1bN7+22267zdLT02vc51Qej8ckmcfjqfU+AIDz0+zZZsHBZlLl4+zZgZ4RnFKX9++AndEqLy/XunXrlJaW5msLDg5WWlqa8vLyqt0nLy/Pr16S0tPTffVFRUUqLi72q4mMjFRycnKNY57OiBEj1Lp1ayUlJemll16SmdV6LtU5fvy4ysrK/DYAQMO3Z4+UnS15vZXPvV5p+HDObCGAHx0eOHBAFRUVio6O9muPjo5WcXFxtfsUFxeftv7kY13GrMljjz2mhQsXavny5br55pv1y1/+UtOnTz/jXMrKynT06NFqx8zJyVFkZKRvi4+Pr9OcAADnp+3b/x2yTqqokHbsCMx8cP5oEugJnK8mTJjg++devXrpyJEjmjp1qkaOHHnWY44fP16jR4/2PS8rKyNsAUAjkJgoBQf7h62QEKlTp8DNCeeHgJ3Rat26tUJCQlRSUuLXXlJSopiYmGr3iYmJOW39yce6jFlbycnJ2rNnj44fP37auURERCg8PLzaMdxutyIiIvw2AEDD166dNGtWZbiSKh9feKGyHRe2gAUtl8ulPn36KDc319fm9XqVm5urlJSUavdJSUnxq5ek5cuX++oTEhIUExPjV1NWVqb8/Pwax6ytwsJCtWzZUm63u1ZzAQBcWLKypF27Kr91uGtX5XMgoB8djh49WpmZmerbt6+SkpL07LPP6siRIxo2bJgk6a677lLbtm2Vk5MjSbr//vuVmpqqp59+WoMHD9b8+fP18ccfa9asWZIq7301atQoPfHEE0pMTFRCQoImTJiguLg4v1sz7N69WwcPHtTu3btVUVGhwsJCSVKnTp3UvHlz/e1vf1NJSYmuuuoqhYWFafny5frd736nMWPG+Ma499579dxzz2ns2LH6v//3/2rFihVauHChlixZcm5ePADAeaddO85i4RTOfwny9KZPn27t27c3l8tlSUlJtmbNGl9famqqZWZm+tUvXLjQLr30UnO5XNatWzdbsmSJX7/X67UJEyZYdHS0ud1uGzRokG3bts2vJjMz0yRV2VauXGlmZu+884717NnTmjdvbs2aNbMePXrYzJkzraKiwm+clStXWs+ePc3lctkll1xic+fOrdPaub0DAAANT13ev4PMvnfPApxTZWVlioyMlMfj4XotAAAaiLq8fwf8T/AAAAA0VgQtAAAAhxC0AAAAHELQAgAAcAhBCwAAwCEELQAAAIcQtAAAABxC0AIAAHAIQQsAAMAhBC0AAACHELQAAAAcQtACAABwCEELAADAIQQtAAAAhxC0AAAAHELQAgAAcAhBCwAAwCEELQAAAIcQtAAAABxC0AIAAHAIQQsAAMAhBC0AAACHELQAAAAcQtACAABwCEELAADAIQQtAAAAhxC0AAAAHELQAgAAcAhBCwAAwCEELQAAAIcQtAAAABxC0AIAAHAIQQsAAMAhBC0AAACHELQAAAAcQtACAABwCEELAADAIQQtAAAAhxC0AAAAHBLwoDVjxgx17NhRYWFhSk5O1kcffXTa+kWLFqlLly4KCwtT9+7dtXTpUr9+M9PEiRMVGxur8PBwpaWlafv27X41Tz75pPr166emTZsqKiqqyjE++eQTDR06VPHx8QoPD9dll12m//mf//Gree+99xQUFFRlKy4uPrsXAgAANDoBDVoLFizQ6NGjNWnSJK1fv149evRQenq69u/fX2396tWrNXToUGVlZamgoEAZGRnKyMjQpk2bfDVTpkzRtGnTNHPmTOXn56tZs2ZKT0/XsWPHfDXl5eW65ZZbdN9991V7nHXr1qlNmzb605/+pM2bN+u3v/2txo8fr+eee65K7bZt27Rv3z7f1qZNmx/4qgAAgMYiyMwsUAdPTk7WlVde6QswXq9X8fHx+u///m+NGzeuSv1tt92mI0eO6O233/a1XXXVVerZs6dmzpwpM1NcXJwefPBBjRkzRpLk8XgUHR2tefPm6fbbb/cbb968eRo1apRKS0vPONcRI0Zo69atWrFihaTKM1rXXHONvvnmm2rPitVGWVmZIiMj5fF4FBERcVZjAACAc6su798BO6NVXl6udevWKS0t7d+TCQ5WWlqa8vLyqt0nLy/Pr16S0tPTffVFRUUqLi72q4mMjFRycnKNY9aWx+NRq1atqrT37NlTsbGxuvbaa7Vq1arTjnH8+HGVlZX5bQAAoPEKWNA6cOCAKioqFB0d7dceHR1d43VOxcXFp60/+ViXMWtj9erVWrBggbKzs31tsbGxmjlzphYvXqzFixcrPj5eAwYM0Pr162scJycnR5GRkb4tPj7+rOcEAADOf00CPYHz3aZNmzRkyBBNmjRJ1113na+9c+fO6ty5s+95v379tHPnTj3zzDP64x//WO1Y48eP1+jRo33Py8rKCFsAADRiATuj1bp1a4WEhKikpMSvvaSkRDExMdXuExMTc9r6k491GfN0tmzZokGDBik7O1sPP/zwGeuTkpK0Y8eOGvvdbrciIiL8NgAA0HgFLGi5XC716dNHubm5vjav16vc3FylpKRUu09KSopfvSQtX77cV5+QkKCYmBi/mrKyMuXn59c4Zk02b96sa665RpmZmXryySdrtU9hYaFiY2PrdBwAANB4BfSjw9GjRyszM1N9+/ZVUlKSnn32WR05ckTDhg2TJN11111q27atcnJyJEn333+/UlNT9fTTT2vw4MGaP3++Pv74Y82aNUuSFBQUpFGjRumJJ55QYmKiEhISNGHCBMXFxSkjI8N33N27d+vgwYPavXu3KioqVFhYKEnq1KmTmjdvrk2bNmngwIFKT0/X6NGjfdd3hYSE6OKLL5YkPfvss0pISFC3bt107NgxzZ49WytWrNDf//73c/TqAQCA854F2PTp0619+/bmcrksKSnJ1qxZ4+tLTU21zMxMv/qFCxfapZdeai6Xy7p162ZLlizx6/d6vTZhwgSLjo42t9ttgwYNsm3btvnVZGZmmqQq28qVK83MbNKkSdX2d+jQwTfG73//e/vRj35kYWFh1qpVKxswYICtWLGiTmv3eDwmyTweT532AwAAgVOX9++A3kfrQsd9tAAAaHgaxH20AAAAGjuCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4pN6CVlpami655JL6Gg4AAKDBa1JfA/3nf/6nDhw4UF/DAQAANHj1FrRGjBhRX0MBAAA0ClyjBQAA4BCu0QIAAHAI12gBAAA4hGu0AAAAHMI1WgAAAA4haAEAADiEi+EBAAAcwsXwAAAADuFieAAAAIdwjRYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQ87qW4e5ubnKzc3V/v375fV6/fpeeumlepkYAABAQ1fnoPXoo4/qscceU9++fRUbG6ugoCAn5gUAANDg1fmjw5kzZ2revHnKz8/Xm2++qTfeeMNvq6sZM2aoY8eOCgsLU3Jysj766KPT1i9atEhdunRRWFiYunfvrqVLl/r1m5kmTpyo2NhYhYeHKy0tTdu3b/erefLJJ9WvXz81bdpUUVFR1R5n9+7dGjx4sJo2bao2bdrooYce0okTJ/xq3nvvPfXu3Vtut1udOnXSvHnz6rx+AADQeNU5aJWXl6tfv371cvAFCxZo9OjRmjRpktavX68ePXooPT1d+/fvr7Z+9erVGjp0qLKyslRQUKCMjAxlZGRo06ZNvpopU6Zo2rRpmjlzpvLz89WsWTOlp6fr2LFjfmu45ZZbdN9991V7nIqKCg0ePFjl5eVavXq1Xn75Zc2bN08TJ0701RQVFWnw4MG65pprVFhYqFGjRukXv/iF3n333Xp5bQAAQCNgdTR27Fh77LHH6rpbtZKSkmzEiBG+5xUVFRYXF2c5OTnV1t966602ePBgv7bk5GQbPny4mZl5vV6LiYmxqVOn+vpLS0vN7Xbb66+/XmW8uXPnWmRkZJX2pUuXWnBwsBUXF/vann/+eYuIiLDjx4+bWeXr0K1bN7/9brvtNktPTz/Dqv/N4/GYJPN4PLXeBwAABFZd3r/rfI3WsWPHNGvWLP3jH//QFVdcodDQUL/+P/zhD7Uap7y8XOvWrdP48eN9bcHBwUpLS1NeXl61++Tl5Wn06NF+benp6XrzzTclVZ5lKi4uVlpamq8/MjJSycnJysvL0+23316rueXl5al79+6Kjo72O859992nzZs3q1evXsrLy/M7zsmaUaNG1Tju8ePHdfz4cd/zsrKyWs0HAAA0THUOWhs2bFDPnj0lye8jO0l1ujD+wIEDqqio8AszkhQdHa1PP/202n2Ki4urrS8uLvb1n2yrqaY2ajrO949RU01ZWZmOHj2q8PDwKuPm5OTo0UcfrfU8AABAw1bnoLVy5Uon5nFBGD9+vN8ZubKyMsXHxwdwRgAAwElndcPSDz74QD//+c/Vr18/ffnll5KkP/7xj/rwww9rPUbr1q0VEhKikpISv/aSkhLFxMRUu09MTMxp608+1mXMuhzn+8eoqSYiIqLas1mS5Ha7FRER4bcBAIDGq85Ba/HixUpPT1d4eLjWr1/vu+bI4/Hod7/7Xa3Hcblc6tOnj3Jzc31tXq9Xubm5SklJqXaflJQUv3pJWr58ua8+ISFBMTExfjVlZWXKz8+vccyajrNx40a/bz8uX75cERER6tq1a63mAgAAUOdvHfbs2dNefvllMzNr3ry57dy508zM1q9fb9HR0XUaa/78+eZ2u23evHm2ZcsWy87OtqioKN+3/e68804bN26cr37VqlXWpEkTe+qpp2zr1q02adIkCw0NtY0bN/pqJk+ebFFRUfbWW2/Zhg0bbMiQIZaQkGBHjx711Xz++edWUFBgjz76qDVv3twKCgqsoKDADh06ZGZmJ06csMsvv9yuu+46KywstGXLltnFF19s48eP943xr3/9y5o2bWoPPfSQbd261WbMmGEhISG2bNmyWq+fbx0CANDw1OX9u85BKzw83IqKiszMP2jt3LnT3G53XYez6dOnW/v27c3lcllSUpKtWbPG15eammqZmZl+9QsXLrRLL73UXC6XdevWzZYsWeLX7/V6bcKECRYdHW1ut9sGDRpk27Zt86vJzMw0SVW2lStX+mp27dplN9xwg4WHh1vr1q3twQcftO+++85vnJUrV1rPnj3N5XLZJZdcYnPnzq3T2glaAAA0PHV5/w4yM6vLGbBLLrlEs2bNUlpamlq0aKFPPvlEl1xyiV555RVNnjxZW7Zsqedzbo1XWVmZIiMj5fF4uF4LOIf27JG2b5cSE6V27QI9GwANTV3ev+t8jdY999yj+++/X/n5+QoKCtLevXv16quvasyYMTXeaR0Azhdz5kgdOkgDB1Y+zpkT6BkBaMzqfEbLzPS73/1OOTk5+vbbbyVVfptuzJgxevzxxx2ZZGPFGS3g3NqzpzJceb3/bgsJkXbt4swWgNqry/t3nYPWSeXl5dqxY4cOHz6srl27qnnz5mc12QsZQQs4t1aurDyTVV37gAHnfDoAGqi6vH/X+YalJ7lcLt+tDgCgIUhMlIKDq57R6tQpcHMC0Lid1Q1LAaAhatdOmjWrMlxJlY8vvMDHhgCcc9ZntACgIcrKktLTpR07Ks9kEbIAOKnOQevw4cNcjwWgQWvXjoAF4Nyo80eHkZGRWrx4sRNzAQAAaFTqHLTMTC+88IKuvvpq9e/fX6NGjdLatWudmBsAAECDdlYXwxcUFKh3797q37+/Nm/erB//+McaM2ZMfc8NAACgQTuri+Ffe+01XXvttb7nGzZs0JAhQ9S2bVs98MAD9TY5AACAhqzOZ7RatWql+Ph4v7YrrrhCzz33nJ5//vl6mxgAAEBDV+eg1bNnT82dO7dKe6dOnbR79+56mRQAAEBjUOePDp944gldc8012rt3r375y1/qiiuu0JEjR/S73/1OCQkJTswRAACgQapz0Lrqqqu0Zs0a3X///frxj3+sk38qMSwsTIsWLar3CQIAADRUZ3UxfI8ePfTee+9p//79Wrdunbxer5KTk9W6dev6nh8AAECD9YP+BE+bNm10ww031NdcAAAAGhX+qDQAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBaDW9uyRVq6sfAQAnBlBC0CtzJkjdeggDRxY+ThnTqBnBADnP4IWgDPas0fKzpa83srnXq80fDhntgDgTM6LoDVjxgx17NhRYWFhSk5O1kcffXTa+kWLFqlLly4KCwtT9+7dtXTpUr9+M9PEiRMVGxur8PBwpaWlafv27X41Bw8e1B133KGIiAhFRUUpKytLhw8f9vU/8sgjCgoKqrI1a9bMVzNv3rwq/WFhYfXwigDnl+3b/x2yTqqokHbsCMx8AKChCHjQWrBggUaPHq1JkyZp/fr16tGjh9LT07V///5q61evXq2hQ4cqKytLBQUFysjIUEZGhjZt2uSrmTJliqZNm6aZM2cqPz9fzZo1U3p6uo4dO+arueOOO7R582YtX75cb7/9tt5//31lZ2f7+seMGaN9+/b5bV27dtUtt9ziN5+IiAi/ms8//7yeXyEg8BITpeBTfluEhEidOgVmPgDQYFiAJSUl2YgRI3zPKyoqLC4uznJycqqtv/XWW23w4MF+bcnJyTZ8+HAzM/N6vRYTE2NTp0719ZeWlprb7bbXX3/dzMy2bNlikmzt2rW+mnfeeceCgoLsyy+/rPa4hYWFJsnef/99X9vcuXMtMjKybgv+Ho/HY5LM4/Gc9RjAuTJ7tllIiJlU+Th7dqBnBACBUZf374Ce0SovL9e6deuUlpbmawsODlZaWpry8vKq3ScvL8+vXpLS09N99UVFRSouLvariYyMVHJysq8mLy9PUVFR6tu3r68mLS1NwcHBys/Pr/a4s2fP1qWXXqof//jHfu2HDx9Whw4dFB8fryFDhmjz5s01rvf48eMqKyvz24CGIitL2rWr8luHu3ZVPgcAnF5Ag9aBAwdUUVGh6Ohov/bo6GgVFxdXu09xcfFp608+nqmmTZs2fv1NmjRRq1atqj3usWPH9OqrryrrlHeWzp0766WXXtJbb72lP/3pT/J6verXr5/21HCFcE5OjiIjI31bfHx8tXXA+apdO2nAgMpHAMCZBfwarYbgjTfe0KFDh5SZmenXnpKSorvuuks9e/ZUamqq/vKXv+jiiy/WCy+8UO0448ePl8fj8W1ffPHFuZg+AAAIkIAGrdatWyskJEQlJSV+7SUlJYqJial2n5iYmNPWn3w8U82pF9ufOHFCBw8erPa4s2fP1k9+8pMqZ8lOFRoaql69emlHDV/FcrvdioiI8NsAAEDjFdCg5XK51KdPH+Xm5vravF6vcnNzlZKSUu0+KSkpfvWStHz5cl99QkKCYmJi/GrKysqUn5/vq0lJSVFpaanWrVvnq1mxYoW8Xq+Sk5P9xi4qKtLKlSurfGxYnYqKCm3cuFGxsbFnrAUAABeAc3Bx/mnNnz/f3G63zZs3z7Zs2WLZ2dkWFRVlxcXFZmZ255132rhx43z1q1atsiZNmthTTz1lW7dutUmTJlloaKht3LjRVzN58mSLioqyt956yzZs2GBDhgyxhIQEO3r0qK/m+uuvt169ell+fr59+OGHlpiYaEOHDq0yv4cfftji4uLsxIkTVfoeffRRe/fdd23nzp22bt06u/322y0sLMw2b95cq7XzrUMAABqeurx/Nwl00Lvtttv01VdfaeLEiSouLlbPnj21bNky38d0u3fvVvD3buDTr18/vfbaa3r44Yf1m9/8RomJiXrzzTd1+eWX+2rGjh2rI0eOKDs7W6Wlperfv7+WLVvmdzPRV199Vb/61a80aNAgBQcH6+abb9a0adP85ub1ejVv3jzdfffdCgkJqTL3b775Rvfcc4+Ki4vVsmVL9enTR6tXr1bXrl3r+2UCAAANUJCZWaAncaEqKytTZGSkPB4P12sBANBA1OX9m28dAgAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEPOi6A1Y8YMdezYUWFhYUpOTtZHH3102vpFixapS5cuCgsLU/fu3bV06VK/fjPTxIkTFRsbq/DwcKWlpWn79u1+NQcPHtQdd9yhiIgIRUVFKSsrS4cPH/b179q1S0FBQVW2NWvW1GkuAADgwhXwoLVgwQKNHj1akyZN0vr169WjRw+lp6dr//791davXr1aQ4cOVVZWlgoKCpSRkaGMjAxt2rTJVzNlyhRNmzZNM2fOVH5+vpo1a6b09HQdO3bMV3PHHXdo8+bNWr58ud5++229//77ys7OrnK8f/zjH9q3b59v69OnT53mAgAALmAWYElJSTZixAjf84qKCouLi7OcnJxq62+99VYbPHiwX1tycrINHz7czMy8Xq/FxMTY1KlTff2lpaXmdrvt9ddfNzOzLVu2mCRbu3atr+add96xoKAg+/LLL83MrKioyCRZQUFBjXM/01zOxOPxmCTzeDy1qgcAAIFXl/fvgJ7RKi8v17p165SWluZrCw4OVlpamvLy8qrdJy8vz69ektLT0331RUVFKi4u9quJjIxUcnKyryYvL09RUVHq27evryYtLU3BwcHKz8/3G/unP/2p2rRpo/79++uvf/1rneYCAAAubE0CefADBw6ooqJC0dHRfu3R0dH69NNPq92nuLi42vri4mJf/8m209W0adPGr79JkyZq1aqVr6Z58+Z6+umndfXVVys4OFiLFy9WRkaG3nzzTf30pz+t1VxOdfz4cR0/ftz3vKysrNo6AADQOAQ0aJ3PWrdurdGjR/ueX3nlldq7d6+mTp3qC1p1lZOTo0cffbS+pggAAM5zAf3osHXr1goJCVFJSYlfe0lJiWJiYqrdJyYm5rT1Jx/PVHPqxfYnTpzQwYMHazyuJCUnJ2vHjh21nsupxo8fL4/H49u++OKLGo8FAAAavoAGLZfLpT59+ig3N9fX5vV6lZubq5SUlGr3SUlJ8auXpOXLl/vqExISFBMT41dTVlam/Px8X01KSopKS0u1bt06X82KFSvk9XqVnJxc43wLCwsVGxtb67mcyu12KyIiwm8DAACN2Dm4OP+05s+fb2632+bNm2dbtmyx7Oxsi4qKsuLiYjMzu/POO23cuHG++lWrVlmTJk3sqaeesq1bt9qkSZMsNDTUNm7c6KuZPHmyRUVF2VtvvWUbNmywIUOGWEJCgh09etRXc/3111uvXr0sPz/fPvzwQ0tMTLShQ4f6+ufNm2evvfaabd261bZu3WpPPvmkBQcH20svvVSnuZwO3zoEAKDhqcv7d8CDlpnZ9OnTrX379uZyuSwpKcnWrFnj60tNTbXMzEy/+oULF9qll15qLpfLunXrZkuWLPHr93q9NmHCBIuOjja3222DBg2ybdu2+dV8/fXXNnToUGvevLlFRETYsGHD7NChQ77+efPm2WWXXWZNmza1iIgIS0pKskWLFlWZ+5nmcjoELQAAGp66vH8HmZkF9pzahausrEyRkZHyeDx8jAgAQANRl/fvgN8ZHgAAoLEiaAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOISgBQAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWzmt79kgrV1Y+AgDQ0BC0cN6aM0fq0EEaOLDycc6cQM8IAIC6IWjhvLRnj5SdLXm9lc+9Xmn4cM5sAQAaFoIWzkvbt/87ZJ1UUSHt2BGY+QAAcDYIWjgvJSZKwaf82xkSInXqFJj5AABwNghaOC+1ayfNmlUZrqTKxxdeqGwHAKChaBLoCQA1ycqS0tMrPy7s1ImQBQBoeAhaOK+1a0fAAgA0XHx0CAAA4BCCFgAAgEMIWgAAAA4haAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWgBAAA4hKAFAADgEIIWAACAQwhaAAAADiFoAQAAOOS8CFozZsxQx44dFRYWpuTkZH300UenrV+0aJG6dOmisLAwde/eXUuXLvXrNzNNnDhRsbGxCg8PV1pamrZv3+5Xc/DgQd1xxx2KiIhQVFSUsrKydPjwYV//e++9pyFDhig2NlbNmjVTz5499eqrr/qNMW/ePAUFBfltYWFhP/DVAAAAjUXAg9aCBQs0evRoTZo0SevXr1ePHj2Unp6u/fv3V1u/evVqDR06VFlZWSooKFBGRoYyMjK0adMmX82UKVM0bdo0zZw5U/n5+WrWrJnS09N17NgxX80dd9yhzZs3a/ny5Xr77bf1/vvvKzs72+84V1xxhRYvXqwNGzZo2LBhuuuuu/T222/7zSciIkL79u3zbZ9//nk9v0IAAKDBsgBLSkqyESNG+J5XVFRYXFyc5eTkVFt/66232uDBg/3akpOTbfjw4WZm5vV6LSYmxqZOnerrLy0tNbfbba+//rqZmW3ZssUk2dq1a30177zzjgUFBdmXX35Z41xvvPFGGzZsmO/53LlzLTIysvaLPYXH4zFJ5vF4znoMAABwbtXl/TugZ7TKy8u1bt06paWl+dqCg4OVlpamvLy8avfJy8vzq5ek9PR0X31RUZGKi4v9aiIjI5WcnOyrycvLU1RUlPr27eurSUtLU3BwsPLz82ucr8fjUatWrfzaDh8+rA4dOig+Pl5DhgzR5s2ba7l6AADQ2AU0aB04cEAVFRWKjo72a4+OjlZxcXG1+xQXF5+2/uTjmWratGnj19+kSRO1atWqxuMuXLhQa9eu1bBhw3xtnTt31ksvvaS33npLf/rTn+T1etWvXz/t2bOn2jGOHz+usrIyvw0AADReAb9GqyFYuXKlhg0bphdffFHdunXztaekpOiuu+5Sz549lZqaqr/85S+6+OKL9cILL1Q7Tk5OjiIjI31bfHz8uVoCAAAIgIAGrdatWyskJEQlJSV+7SUlJYqJial2n5iYmNPWn3w8U82pF9ufOHFCBw8erHLcf/7zn7rpppv0zDPP6K677jrtekJDQ9WrVy/t2LGj2v7x48fL4/H4ti+++OK04wEAgIYtoEHL5XKpT58+ys3N9bV5vV7l5uYqJSWl2n1SUlL86iVp+fLlvvqEhATFxMT41ZSVlSk/P99Xk5KSotLSUq1bt85Xs2LFCnm9XiUnJ/va3nvvPQ0ePFi///3v/b6RWJOKigpt3LhRsbGx1fa73W5FRET4bQAAoBE7Bxfnn9b8+fPN7XbbvHnzbMuWLZadnW1RUVFWXFxsZmZ33nmnjRs3zle/atUqa9KkiT311FO2detWmzRpkoWGhtrGjRt9NZMnT7aoqCh76623bMOGDTZkyBBLSEiwo0eP+mquv/5669Wrl+Xn59uHH35oiYmJNnToUF//ihUrrGnTpjZ+/Hjbt2+fb/v66699NY8++qi9++67tnPnTlu3bp3dfvvtFhYWZps3b67V2vnWIQAADU9d3r8DHrTMzKZPn27t27c3l8tlSUlJtmbNGl9famqqZWZm+tUvXLjQLr30UnO5XNatWzdbsmSJX7/X67UJEyZYdHS0ud1uGzRokG3bts2v5uuvv7ahQ4da8+bNLSIiwoYNG2aHDh3y9WdmZpqkKltqaqqvZtSoUb55R0dH24033mjr16+v9boJWgAANDx1ef8OMjML2Om0C1xZWZkiIyPl8Xj4GBEAgAaiLu/ffOsQAADAIQQtAAAAhxC0AAAAHELQAgAAcAhBCwAAwCEELQAAAIcQtAAAABxC0Gqk9uyRVq6sfAQAAIFB0GqE5syROnSQBg6sfJwzJ9AzAgDgwkTQamT27JGysyWvt/K51ysNH86ZLQAAAoGg1chs3/7vkHVSRYW0Y0dg5gMAwIWMoNXIJCZKwaf8VENCpE6dAjMfAAAuZAStRqZdO2nWrMpwJVU+vvBCZTsAADi3mgR6Aqh/WVlSenrlx4WdOhGyAAAIFIJWI9WuHQELAIBA46NDAAAAhxC0AAAAHELQAgAAcAhBCwAAwCEELQAAAIcQtAAAABxC0AIAAHAIQQsAAMAhBC0AAACHELQAAAAcwp/gCSAzkySVlZUFeCYAAKC2Tr5vn3wfPx2CVgAdOnRIkhQfHx/gmQAAgLo6dOiQIiMjT1sTZLWJY3CE1+vV3r171aJFCwUFBZ3TY5eVlSk+Pl5ffPGFIiIizumxz7ULZa0Xyjol1toYXSjrlC6ctTbmdZqZDh06pLi4OAUHn/4qLM5oBVBwcLDatWsX0DlEREQ0uv8AanKhrPVCWafEWhujC2Wd0oWz1sa6zjOdyTqJi+EBAAAcQtACAABwCEHrAuV2uzVp0iS53e5AT8VxF8paL5R1Sqy1MbpQ1ildOGu9UNZ5JlwMDwAA4BDOaAEAADiEoAUAAOAQghYAAIBDCFoAAAAOIWg1UDNmzFDHjh0VFham5ORkffTRR6etX7Rokbp06aKwsDB1795dS5cu9es3M02cOFGxsbEKDw9XWlqatm/f7uvftWuXsrKylJCQoPDwcP3oRz/SpEmTVF5e7sj6vu9cr/X7jh8/rp49eyooKEiFhYX1taQaBWqtS5YsUXJyssLDw9WyZUtlZGTU57KqCMQ6P/vsMw0ZMkStW7dWRESE+vfvr5UrV9b72k5V32v9y1/+ouuuu04XXXRRjf9eHjt2TCNGjNBFF12k5s2b6+abb1ZJSUl9LquKc73OgwcP6r//+7/VuXNnhYeHq3379ho5cqQ8Hk99L62KQPxMTzIz3XDDDQoKCtKbb75ZD6upWaDWmZeXp4EDB6pZs2aKiIjQf/zHf+jo0aP1taxzz9DgzJ8/31wul7300ku2efNmu+eeeywqKspKSkqqrV+1apWFhITYlClTbMuWLfbwww9baGiobdy40VczefJki4yMtDfffNM++eQT++lPf2oJCQl29OhRMzN755137O6777Z3333Xdu7caW+99Za1adPGHnzwwUa31u8bOXKk3XDDDSbJCgoKnFqmmQVurX/+85+tZcuW9vzzz9u2bdts8+bNtmDBgka3zsTERLvxxhvtk08+sc8++8x++ctfWtOmTW3fvn0Naq2vvPKKPfroo/biiy/W+O/lvffea/Hx8Zabm2sff/yxXXXVVdavXz+nlhmQdW7cuNF+9rOf2V//+lfbsWOH5ebmWmJiot18882OrdMscD/Tk/7whz/4fie98cYb9by6fwvUOlevXm0RERGWk5NjmzZtsk8//dQWLFhgx44dc2qpjiNoNUBJSUk2YsQI3/OKigqLi4uznJycautvvfVWGzx4sF9bcnKyDR8+3MzMvF6vxcTE2NSpU339paWl5na77fXXX69xHlOmTLGEhIQfspQzCuRaly5dal26dLHNmzefk6AViLV+99131rZtW5s9e3Z9L6dGgVjnV199ZZLs/fff99WUlZWZJFu+fHm9re1U9b3W7ysqKqr238vS0lILDQ21RYsW+dq2bt1qkiwvL+8HrKZmgVhndRYuXGgul8u+++67ui2gDgK51oKCAmvbtq3t27fP8aAVqHUmJyfbww8//MMmf57ho8MGpry8XOvWrVNaWpqvLTg4WGlpacrLy6t2n7y8PL96SUpPT/fVFxUVqbi42K8mMjJSycnJNY4pSR6PR61atfohyzmtQK61pKRE99xzj/74xz+qadOm9bmsagVqrevXr9eXX36p4OBg9erVS7Gxsbrhhhu0adOm+l6ipMCt86KLLlLnzp31yiuv6MiRIzpx4oReeOEFtWnTRn369KnvZUpyZq21sW7dOn333Xd+43Tp0kXt27ev0zi1Fah1Vsfj8SgiIkJNmjjzZ3wDudZvv/1W//Vf/6UZM2YoJiam7pOvg0Ctc//+/crPz1ebNm3Ur18/RUdHKzU1VR9++OHZLeQ8QdBqYA4cOKCKigpFR0f7tUdHR6u4uLjafYqLi09bf/KxLmPu2LFD06dP1/Dhw89qHbURqLWame6++27de++96tu3b72s5UwCtdZ//etfkqRHHnlEDz/8sN5++221bNlSAwYM0MGDB3/4wk4RqHUGBQXpH//4hwoKCtSiRQuFhYXpD3/4g5YtW6aWLVvWy9pO5cRaa6O4uFgul0tRUVE/aJzaCtQ6q5vH448/ruzs7LMeozbHCNRaH3jgAfXr109Dhgyp26TPQqDW+f3fR/fcc4+WLVum3r17a9CgQTVeR9sQELRQZ19++aWuv/563XLLLbrnnnsCPZ16N336dB06dEjjx48P9FQc5/V6JUm//e1vdfPNN6tPnz6aO3eugoKCtGjRogDPrv6YmUaMGKE2bdrogw8+0EcffaSMjAzddNNN2rdvX6Cnhx+orKxMgwcPVteuXfXII48Eejr17q9//atWrFihZ599NtBTcdTJ30fDhw/XsGHD1KtXLz3zzDPq3LmzXnrppQDP7uwRtBqY1q1bKyQkpMo3iEpKSmo8nRwTE3Pa+pOPtRlz7969uuaaa9SvXz/NmjXrB63lTAK11hUrVigvL09ut1tNmjRRp06dJEl9+/ZVZmbmD19YNQK11tjYWElS165dff1ut1uXXHKJdu/e/QNWVL1A/kzffvttzZ8/X1dffbV69+6t//3f/1V4eLhefvnlelnbqZxYa23ExMSovLxcpaWlP2ic2grUOk86dOiQrr/+erVo0UJvvPGGQkND6zxGbQVqrStWrNDOnTsVFRWlJk2a+D4avfnmmzVgwIC6LaIWArXO6n4fSdJll13myO+jc4Wg1cC4XC716dNHubm5vjav16vc3FylpKRUu09KSopfvSQtX77cV5+QkKCYmBi/mrKyMuXn5/uN+eWXX2rAgAG+sx7Bwc7+6xOotU6bNk2ffPKJCgsLVVhY6PuK8oIFC/Tkk0/W6xpPCtRa+/TpI7fbrW3btvlqvvvuO+3atUsdOnSot/WdFKh1fvvtt5JU5d/Z4OBg3/9F1zcn1lobffr0UWhoqN8427Zt0+7du+s0Tm0Fap1S5c/5uuuuk8vl0l//+leFhYXVfQF1EKi1jhs3Ths2bPD9Tjp5W4RnnnlGc+fOrftCziBQ6+zYsaPi4uL8fh9JlbdmceL30TkT6KvxUXfz5883t9tt8+bNsy1btlh2drZFRUVZcXGxmZndeeedNm7cOF/9qlWrrEmTJvbUU0/Z1q1bbdKkSdV+PT4qKsreeust27Bhgw0ZMsTv6/F79uyxTp062aBBg2zPnj22b98+39bY1nqqunzrqSGu9f7777e2bdvau+++a59++qllZWVZmzZt7ODBg41mnV999ZVddNFF9rOf/cwKCwtt27ZtNmbMGAsNDbXCwkJH1unUWr/++msrKCiwJUuWmCSbP3++FRQU+P23eO+991r79u1txYoV9vHHH1tKSoqlpKQ0qnV6PB5LTk627t27244dO/x+J504caJRrbU6Oge3dwjEOp955hmLiIiwRYsW2fbt2+3hhx+2sLAw27Fjh2NrdRpBq4GaPn26tW/f3lwulyUlJdmaNWt8fampqZaZmelXv3DhQrv00kvN5XJZt27dbMmSJX79Xq/XJkyYYNHR0eZ2u23QoEG2bds2X//cuXNNUrWb0871Wk91roKWWWDWWl5ebg8++KC1adPGWrRoYWlpabZp0ybH1mgWmHWuXbvWrrvuOmvVqpW1aNHCrrrqKlu6dKljazypvtda03+LkyZN8tUcPXrUfvnLX1rLli2tadOm9p//+Z+O/0/RuV7nypUra/ydVFRU1KjWWh2ng5ZZ4NaZk5Nj7dq1s6ZNm1pKSop98MEHTi3xnAgyM3PufBkAAMCFi2u0AAAAHELQAgAAcAhBCwAAwCEELQAAAIcQtAAAABxC0AIAAHAIQQsAAMAhBC0AAACHELQAAAAcQtACAAcNGDBAo0aNCvQ0AAQIf4IHwAVrwIAB6tmzp5599lnHxjt48KBCQ0PVokWLejkGgIalSaAnAADnu/LycrlcrrPat1WrVvU8GwANCR8dAjgrXq9XU6ZMUadOneR2u9W+fXs9+eSTkqTjx49r5MiRatOmjcLCwtS/f3+tXbvWb/8BAwZo5MiRGjt2rFq1aqWYmBg98sgjtRr/ZH9OTo4SEhIUHh6uHj166M9//nOtj3H33Xfrn//8p/7nf/5HQUFBCgoK0q5du3z7/epXv9KoUaPUunVrpaenS5KWLVum/v37KyoqShdddJF+8pOfaOfOnacd79SPDuvjtanJ7t27lZmZqejoaN9r8uGHH55xvx/6WgI4DQOAszB27Fhr2bKlzZs3z3bs2GEffPCBvfjii2ZmNnLkSIuLi7OlS5fa5s2bLTMz01q2bGlff/21b//U1FSLiIiwRx55xD777DN7+eWXLSgoyP7+97+fcXwzsyeeeMK6dOliy5Yts507d9rcuXPN7Xbbe++9V6tjlJaWWkpKit1zzz22b98+27dvn504ccK3X/Pmze2hhx6yTz/91D799FMzM/vzn/9sixcvtu3bt1tBQYHddNNN1r17d6uoqKhxvNTUVLv//vt9c6qP16Y6u3btsujoaLvllltszZo19tlnn9msWbPsk08+OePP8oe+lgBqRtACUGdlZWXmdrv9gs9Jhw8fttDQUHv11Vd9beXl5RYXF2dTpkzxtaWmplr//v399r3yyivt17/+9WnHNzM7duyYNW3a1FavXu3XnpWVZUOHDq3VMU72fz8EfX+/Xr161bD6f/vqq69Mkm3cuLHG8b7fVh+vTU1uuOEGGzJkSI39ubm59tRTT1Vpr6/XEkD1uEYLQJ1t3bpVx48f16BBg6r07dy5U999952uvvpqX1toaKiSkpK0detWv9orrrjC73lsbKz2799/2vElaceOHfr222917bXX+rWXl5erV69etTrGmfTp06dK2/bt2zVx4kTl5+frwIED8nq9kio/srv88svPOGZ9vDbV+fzzz/XOO++ooKCgxmMPHDhQAwcOrNJ+Ll5L4EJG0AJQZ+Hh4fUyTmhoqN/zoKAgeb3eM45/+PBhSdKSJUvUtm1bvz63212rY5xJs2bNqrTddNNN6tChg1588UXFxcXJ6/Xq8ssvV3l5+RnHq6u6zLuwsFAul0s9e/ascbyf/vSnevLJJ9W9e3e/9nPxWgIXMi6GB1BniYmJCg8PV25ubpW+H/3oR3K5XFq1apWv7bvvvtPatWvVtWvXHzy+JHXt2lVut1u7d+9Wp06d/Lb4+Phar8PlcqmioqJWtV9//bW2bdumhx9+WIMGDdJll12mb775pk7j1cdrU53Q0FCdOHFC3377bY01n376qbp06VKlvb5eSwDV44wWgDoLCwvTr3/9a40dO1Yul0tXX321vvrqK23evFlZWVm677779NBDD6lVq1Zq3769pkyZom+//VZZWVn1Mn6LFi00ZswYPfDAA/J6verfv788Ho9WrVqliIgIZWZm1uo4HTt2VH5+vnbt2qXmzZurVatWCg6u/v8/W7ZsqYsuukizZs1SbGysdu/erXHjxp1xvO9r1qzZD35tqpOcnKzIyEjdd999GjdunMxM77//vgYNGqTExEQdOnRIYWFhVc5ISaq317I6zz33nN544w1fYD71eU1tQGNC0AJwViZMmKAmTZpo4sSJ2rt3r2JjY3XvvfdKkiZPniyv16s777xThw4dUt++ffXuu++qZcuW9TK+JD3++OO6+OKLlZOTo3/961+KiopS79699Zvf/KbWxxgzZowyMzPVtWtXHT16VEVFRerYsWO1tcHBwZo/f75Gjhypyy+/XJ07d9a0adM0YMCA0453qvp4bU510UUX6W9/+5seeughXXnllXK5XLrqqqs0dOhQSdLmzZvVrVu3Gvevj9eyOgcOHPDd/qK65zW1AY0Jd4YHgEbuxRdf1FdfffWDgxOAuuMaLQBo5DZu3Firb0UCqH+c0QIAAHAIZ7QAAAAcQtACAABwCEELAADAIQQtAAAAhxC0AAAAHELQAgAAcAhBCwAAwCEELQAAAIcQtAAAABxC0AIAAHAIQQsAAMAhBC0AAACH/D8Nm43osBOPGgAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["#paramètres\n","sigma=np.array([771e-6,358e-6,1500e-6,171e-6,958e-6,1847e-6])\n","\n","#concentration des solutions fille\n","#soit effectuer le calcul soit directement les valeurs\n","#ci=np.array([0.01,0.0075,0.005,0.0025,0.001])\n","\n","#graphique\n","plt.figure(dpi=100)\n","plt.plot(ci,sigma,'b.',label='expérience')\n","\n","plt.xlabel('concentration $c_i$ en ...')\n","plt.ylabel('$\\sigma$ en ...')\n","plt.legend()\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"2rJbJkEGaxRB"},"source":["Les points semblent se répartir aléatoirement autour d'une droite passant par l'origine, on peut le vérifier en faisant une régressin avec une fonction linéaire (difficile avec python) ou calculer le coefficient directeur et tracer la droite pour voir. Nous allons utiliser la deuxième méthode."]},{"cell_type":"markdown","metadata":{"id":"Of53jixfZ50J"},"source":["##Analyse statistique\n","On note $\\alpha$ le coefficient de proportionnalité"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":576},"executionInfo":{"elapsed":1477,"status":"ok","timestamp":1725566310529,"user":{"displayName":"Physique Chimie Val d'Argens","userId":"11438166584008528880"},"user_tz":-120},"id":"si_eRyVwZ8vR","outputId":"bf9ca392-4aa8-49f0-83ec-002c170b4bd4"},"outputs":[{"output_type":"stream","name":"stdout","text":["La valeur moyenne du coefficient directeur est : 0.10777797\n","Incertitude type sur la valeur moyenne est : 0.0008031558760726343\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtQAAAIMCAYAAADVQDuyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AAB+UUlEQVR4nO3deVxUVRsH8N+AwAybBIJC7oCouKZAmopLqYkmKaCm5ZZLaKZluZS5l+ab5JIm5VZh7ra8luVC5luGoqLhviYpiYICyjDozHn/mJgY5rLNwMwAv+/nw8fmueec+9yr6cPh3HNlQggBIiIiIiIyio2lEyAiIiIiqsxYUBMRERERmYAFNRERERGRCVhQExERERGZgAU1EREREZEJWFATEREREZmABTURERERkQlYUBMRERERmYAFNRERERGRCWpYOgEqX/fu3cPBgwdRr149ODg4WDodIiIiokpFpVIhJSUFoaGhcHNzK1UfFtRVzMGDBxEeHm7pNIiIiIgqta+//hr9+/cvVVsW1FVMvXr1AGj/EPj5+Vk4GyIiIqLK5dKlSwgPD9fVVKXBgrqKyV/m4efnh8DAQAtnQ0RERFQ5lWXpLB9KJCIiIiIyAQtqIiIiIiITsKAmIiIiIjIBC2oiIiIiIhPwocRqSAiBBw8eICsrCyqVCkIIS6dEVCoymQwODg5wdXWFk5MTZDKZpVMiIiJiQV3dCCGQlpaGjIwMAICdnR1sbPiDCqoc1Go1MjMzkZmZCXd3d3h5ebGoJiIii2NBXc08ePAAGRkZcHR0hLe3N+zt7S2dElGZ5OXlITU1FRkZGXBycoKzs7OlUyIiomqOU5PVTFZWFgCwmKZKy97eHt7e3gD+/fNMRERkSSyoqxmVSgU7OzsW01Sp2dvbw87ODiqVytKpEBERsaCuboQQXDNNVYJMJuMDtUREZBVYWRFRpcSHEYmIyFqwoCYiIiIiMgELaiIiIiIiE7CgJqoAv/zyC+bNm4fMzExLp0JEREQVjAU1UTn7888/ER4eDhcXF9SsWbPU/Ro2bIgRI0ZUXGJERESV0MmTwJAhQKtW2l9PnrR0Rob4YheicvTw4UMMGjQII0aMwJQpUyydDhERUaV28iTQoQOgVGo///EH8M03wOHDQOvWls2tIBbUROXo9OnTGDx4MF577bUy9z1//jy3NCQiIipg0SJtMR2Kn+GPi/gMY6BUauNffWXp7P7FgpqoHLVp0wZt2rQpdXshBHJzc6FQKODg4FBxiREREVVCZ5PVmI35mIX50MAGJ9EaRxGMM2csnZk+TodRubGWNU43btzAqFGjULt2bTg4OCAwMBDr1q0DACiVSjRt2hRNmzaFMv/nRwAyMjLg7e2Njh07Qq1WAwBGjBgBZ2dnXLlyBb169YKTkxN8fHwwb948gxeKaDQafPTRRwgMDIRcLkft2rUxbtw43L17V69dw4YN0bdvX/z4449o3749FAoF1qxZoztWeA31vXv3MHnyZNSrVw8ODg7w8/PD4sWLodFodG2uXbsGmUyG//znP4iNjYWvry8cHBwQFBSEo0ePGtyfc+fOISoqCp6enlAoFAgICMDbb79d6ntIRERkFjduYNOtHpiDubCFBo9QA41xBQDQvLmFcyuEM9RULqxljdOtW7fw5JNPQiaTYeLEifD09MQPP/yA0aNHIysrC5MnT8bGjRvx1FNP4e2338bSpUsBABMmTEBmZiY2bNgAW1tb3XhqtRq9e/fGk08+iQ8++AB79uzB7Nmz8ejRI8ybN0/Xbty4cdiwYQNGjhyJSZMm4erVq1i5ciVOnDiBX3/9FXZ2drq258+fx5AhQzBu3DiMGTMGAQEBkteSk5OD0NBQ3LhxA+PGjUP9+vXx22+/YcaMGUhNTcVHH32k137Tpk3Izs7GuHHjIJPJ8MEHH2DAgAG4cuWK7vynTp1C586dYWdnh7Fjx6Jhw4a4fPkyvvvuOyxcuLDU95CIiKhCff89MHw4mt+5AwA4g2YYhC1IRksoFMD06RbOrzBBVUpycrIAIJKTkyWPX758WVy+fLnczzt4sBCA4dfgweV+qmKNHj1aeHt7izt37hTKb7CoWbOmyMnJEUIIMWPGDGFjYyN++eUXsW3bNgFAfPTRR3p9hg8fLgCIV199VRfTaDQiLCxM2Nvbi9u3bwshhDh06JAAIOLi4vT679mzxyDeoEEDAUDs2bPHIPcGDRqI4cOH6z7Pnz9fODk5iQsXLui1mz59urC1tRXXr18XQghx9epVAUB4eHiIjIwMXbtvvvlGABDfffedLtalSxfh4uIi/vzzT70xNRpNme+hpVXUn2UiIrIglUqIN97QKybuPD9aDI+4L1q10tYVSUkVm0JJtZQULvmgcnH6tHTcnGuchBDYsWMH+vXrByEE7ty5o/vq1asXMjMzcfz4cQDAnDlzEBgYiOHDhyM6OhqhoaGYNGmS5LgTJ07U/Xf+rG1eXh727dsHANi2bRtq1qyJZ555Ru+c7dq1g7OzM+Lj4/XGa9SoEXr16lXi9Wzbtg2dO3fGY489pjfu008/DbVajV9++UWv/aBBg/DYY4/pPnfu3BkAcOWK9sdjt2/fxi+//IJRo0ahfv36en3zX+NdlntIRERUrq5cATp1Aj78UPvZ2RnYtAkeOz/Dhm1OOHlS+yCiNe3ukY9LPqhcBAZql3kUZs41Trdv38a9e/cQGxuL2NhYyTZpaWkAAHt7e6xbtw5BQUGQy+VYv369rqgsyMbGBo0bN9aLNWnSBIB27TIAXLx4EZmZmfDy8ir2nPkaNWpUquu5ePEiTp06BU9Pz1KNW7hIzi+u89dx5xfWLVq0KPKcZbmHRERE5WbrVmDMGCArS/v5iSeALVsAPz/L5lVKLKipXEyfrl0zXeA5P7Ovccp/UG/YsGEYPny4ZJtWrVrp/vvHH38EAOTm5uLixYulLnSlzuvl5YW4uDjJ44ULYoVCUepxn3nmGbz11luSx/ML+3wF134XJAo9QFnSOYHS30MiIiKTKJXA5MlAwUmc114DFi8GKtHuVyyoqVy0bq19AHHRIu0yj+bNtcW0OX8s4+npCRcXF6jVajz99NPFtj116hTmzZuHkSNHIikpCS+//DL++OMPgzcbajQaXLlyRa94vXDhAgDtrhwA4Ovri3379uGpp54qdbFcGr6+vrh//36J11Ja+TPtycnJRbYpyz0kIiIyyZkzwKBBQP6/S+7uwPr1wHPPWTYvI3ANNZWb1q21a5sstcbJ1tYWAwcOxI4dOySLxtu3bwPQvs1wxIgR8PHxwbJly7BhwwbcunWryDcbrly5UvffQgisXLkSdnZ26NGjBwAgKioKarUa8+fPN+j76NEj3Lt3z6jriYqKwuHDh3Uz6QXdu3cPjx49KtN4np6e6NKlC9atW4fr16/rHcufxS7tPSQiIjKaEMC6dUD79v8W0506AUlJlbKYBjhDTVXMokWLEB8fj5CQEIwZMwbNmzdHRkYGjh8/jn379iEjIwMLFixAUlIS9u/fDxcXF7Rq1Qrvvvsu3nnnHURERKBPnz668eRyOfbs2YPhw4cjJCQEP/zwA3bv3o2ZM2fqlnKEhoZi3LhxeP/995GUlISePXvCzs4OFy9exLZt27Bs2TJERESU+VrefPNNfPvtt+jbty9GjBiBdu3a4cGDB/jjjz+wfft2XLt2DbVq1SrTmMuXL0enTp3wxBNPYOzYsWjUqBGuXbuG3bt3IykpqdT3kIiIyCjZ2cD48cCmTdrPMhnw9tvA7NlAjcpbllbezIkk1K5dG0eOHMG8efOwc+dOrFq1Ch4eHggMDMTixYtx/PhxvPfee5g4cSK6deum6zd9+nR88803GDNmDE6fPg03NzcA2hnbPXv24JVXXsGbb74JFxcXzJ49G++++67eeT/55BO0a9cOa9aswcyZM1GjRg00bNgQw4YNw1NPPWXUtTg6OuLgwYN47733sG3bNnz++edwdXVFkyZNMHfuXIPlKaXRunVr/P7775g1axZWr16N3NxcNGjQAFFRUaW+h0REREY5fly7xOPSJe3nOnWAL78E/vmJb2UmE2V5Yoms3unTp9GiRQskJycjMDDQ4Hj+Tg+Fd64gQyNGjMD27dtx//59S6dCEvhnmYiokhACWLECePNNIC9PG+vZE/j8c6B2bcvmJqGkWkoK11ATERERUcXIyACef167c0deHmBrq93B4IcfrLKYNhaXfBARERFR+fvf/4AXXgBSUrSf69cHNm8GOnSwbF4VgDPURERERFR+1Gpg4UKga9d/i+nnn9fu4lEFi2mABTVRkTZs2MD100RERGXx999Ar17AO+9oC2t7e2DlSmDHDuCfN/hWRVzyQURERESm++kn4MUXgbQ07ecmTbSvD2/TxqJpmQNnqImIiIjIeA8fAjNmaGem84vpF18Ejh2rFsU0YOUFtUqlwrRp0+Dj4wOFQoGQkBDs3bu3VH1v3LiBqKgouLm5wdXVFf3799dts1XY2rVr0axZM8jlcvj7+2PFihUGbc6fP48pU6agY8eOkMvlkMlkuHbtmkG7n3/+GTKZrMivhQsX6tpu2LChyHZ///136W4SERERkaX8+ScQGqrduQMAnJyAjRu1W+I5O1s2NzOy6iUf+fsAT548Gf7+/tiwYQP69OmD+Ph4dOrUqch+9+/fR7du3ZCZmYmZM2fCzs4OMTExCA0NRVJSEjw8PHRt16xZg/Hjx2PgwIF4/fXXcejQIUyaNAk5OTmYNm2art3hw4exfPlyNG/eHM2aNdO9Va6wZs2a4YsvvjCIf/HFF/jpp5/Qs2dPg2Pz5s1Do0aN9GL5LxYhIiIiskpffw2MHAncu6f93KoVsHUrEBBgyawsQ1iphIQEAUAsWbJEF1MqlcLX11d06NCh2L6LFy8WAMSRI0d0sbNnzwpbW1sxY8YMXSwnJ0d4eHiIsLAwvf5Dhw4VTk5OIiMjQxdLT08XWVlZQgghlixZIgCIq1evlvp6/Pz8hL+/v15s/fr1AoA4evRoqccpSXJysgAgkpOTJY9fvnxZXL58udzOR2Qp/LNMRGQhSqUQEycKoX1li/YrOlobrwJKqqWkWO2Sj+3bt8PW1hZjx47VxeRyOUaPHo3Dhw8jJX8bliL6BgUFISgoSBdr2rQpevToga1bt+pi8fHxSE9PR3R0tF7/CRMm4MGDB9i9e7cu5u7uDhcXF6Ou5ciRI7h06RKGDh1aZJvs7Gyo1WqjxiciIiIyiwsXtFvfrVyp/VyzJrB9O/Dxx4BcbtncLMhqC+oTJ06gSZMmcHV11YsHBwcDQJFLLjQaDU6dOoX27dsbHAsODsbly5eRnZ2tOwcAg7bt2rWDjY2N7rip4uLiAKDIgrpbt25wdXWFo6MjnnvuOVy8eLFczktERERUbr78EnjiCe1+0gAQEqL974EDLZmVVbDaNdSpqanw9vY2iOfHbt68KdkvIyMDKpWqxL4BAQFITU2Fra0tvLy89NrZ29vDw8OjyHOUhVqtxpYtWxAcHAw/Pz+9Y46OjhgxYoSuoD527BiWLl2Kjh074vjx46hXr16xY6elpeH27dt6sUuXLpmcMxEREZHO/fvAxInahw3zvfUWsGABYGdnubysiNXOUCuVSjg4OBjE5f/8OEGpVBbZD0Cp+iqVStjb20uOI5fLizxHWezfvx+3bt2SnJ2OiorC+vXr8dJLLyE8PBzz58/Hjz/+iPT0dL3dQIqyatUqtGjRQu8rPDzc5JyrglWrVkEmkyEkJKRCxi/NzjBS7t+/j9mzZ6N3795wd3eHTCbDhg0bimx/9uxZ9O7dG87OznB3d8eLL75o8E3UnDlzit1Z5tdff9W1La7dM888Y9SYALB161Y8+eSTcHNzg4eHB0JDQ/WWTBERUSV16hTQvv2/xbSnJ/DDD8DixSymC7DaGWqFQgGVSmUQz83N1R0vqh+AUvVVKBTIy8uTHCc3N7fIc5RFXFwcbG1tMWjQoFK179SpE0JCQrBv374S20ZHRyMyMlIvdunSJRbV0N73hg0b6tavF/7pgClKuzOMlDt37mDevHmoX78+WrdujZ9//rnItn/99Re6dOmCmjVr4r333sP9+/fxn//8B3/88QeOHDmi+2ZwwIABktc3c+ZM3L9/X+9ZAqkdaBITE7Fs2TK9HWjKMuaKFSswadIkhIWFYdGiRcjNzcWGDRvQt29f7NixAwMGDCj2nhARkRUSAvjkE2DKFCC/purWTbvsw8fHsrlZowp8SNIkTz/9tGjWrJlBfN++fQKA+PbbbyX7qdVq4eDgIF555RWDY++8844AoNutY8GCBQKAuHXrll47lUolbGxsxOuvvy55jtLu8pGTkyNcXFxEr169im1XWGRkpHjsscfK1Ccfd/kQ4sqVKwKA2Llzp/D09BRz5swpt7HLsjOMlNzcXJGamiqEEOLo0aMCgFi/fr1k21deeUUoFArx559/6mJ79+4VAMSaNWuKPc/169eFTCYTY8aMKfGaRo8eLWQymUhJSTFqTH9/fxEUFCQ0Go0ulpmZKZydncVzzz1X4vmNVR3+LBMRWcTdu0IMHPjvDh42NkLMmyfEo0eWzswsqtQuH23atMGFCxeQlZWlF09ISNAdl2JjY4OWLVsiMTHR4FhCQgIaN26s260jf4zCbRMTE6HRaIo8R2l9++23yM7OLnZ3DylXrlyBp6enSeeuzuLi4vDYY48hLCwMERERuodCy0NZdoaR4uDggDp16pTqXDt27EDfvn1Rv359Xezpp59GkyZN9HarkfLVV19BCFHinz2VSoUdO3YgNDQUdevWNWrMrKwseHl5QSaT6WKurq5wdnYu1U95NBoNli1bhpYtW0Iul8PT0xO9e/eW/H+YiIgqWEIC0LYtsGOH9vPjjwM//wzMmgXY2lo0NWtmtQV1REQE1Go1YmNjdTGVSoX169cjJCRE98De9evXce7cOYO+R48e1fsH+fz58zhw4IDeEonu3bvD3d0dq1ev1uu/evVqODo6IiwszKRr2LRpExwdHfH8889LHi+8FhYAvv/+exw7dgy9e/c26dzVWVxcHAYMGAB7e3sMGTIEFy9exNGjRw3a3b17F3fu3CnxKycnR9fHXDvD3LhxA2lpaUXuVlPSeeLi4lCvXj106dKl2Hbff/897t27V6pv+ooas2vXrtizZw9WrFiBa9eu4dy5c5gwYQIyMzPx2muvlTju6NGjMXnyZNSrVw+LFy/G9OnTIZfL8fvvv5fYl4iIyolGAyxZAnTqBOS/CbpvX+DkSaBzZ4umVhlY7RrqkJAQREZGYsaMGUhLS4Ofnx82btyIa9euYe3atbp2L730Eg4ePAghhC4WHR2NTz/9FGFhYZg6dSrs7OywdOlS1K5dG2+88YaunUKhwPz58zFhwgRERkaiV69eOHToEL788kssXLgQ7u7uuraZmZm6B8/yH8hauXIl3Nzc4ObmhokTJ+rln5GRgR9++AEDBw6EcxGv3uzYsSPatm2L9u3bo2bNmjh+/DjWrVuHevXqYebMmabfxLKaPPnfrXAsrU0b4KOPytzt2LFjOHfunO73qlOnTqhbty7i4uL01v0CQNu2bfHnn3+WOObs2bMxZ84cADDLzjD55wFQ5G41+bvZSD18e/r0aZw6dQpvvfWW3qyxlLi4ODg4OCAiIqLYdsWNuXz5cty5cweTJk3CpEmTAAC1atXC/v370aFDh2LHjY+Px4YNGzBp0iQsW7ZMF3/jjTf0/p8mIqIKdPs28NJLwJ492s92dsAHHwCvvQaU8O8IaVltQQ0An3/+OWbNmoUvvvgCd+/eRatWrfDf//63xFk3FxcX/Pzzz5gyZQoWLFgAjUaDrl27IiYmxmApRXR0NOzs7PDhhx/i22+/Rb169RATE2Mws3b37l3MmjVLL/bhhx8CABo0aGBQUG/btg0PHz7ECy+8UGSegwYNwu7du/HTTz8hJycH3t7eGDNmDGbPno3atWuXeH/KXVIScPCg+c9bjuLi4lC7dm1069YNgHZXi0GDBuHLL7/Ehx9+CNsCP66Ki4sr1U4ujRs31v23OXaGyT8PUPJuNVLHS9r3PF9WVhZ2796NPn36lPiq++LGdHR0REBAAOrWrYu+ffsiOzsbMTExGDBgAA4dOlTsA6E7duyATCbD7NmzDY6V9M0AERGVg/h4YOhQ4J+JHDRuDGzZot3Zg0rNqgtquVyOJUuWYMmSJUW2KWqXhLp162Lbtm2lOs+YMWMwZsyYYts0bNiwTDNm48aNw7hx44pts2DBAixYsKDUY1Y4E9eMlysjclGr1di8eTO6deuGq1ev6uIhISH48MMPsX//fr2dLJ566qkyn8McO8Pknwco3W41BQkhsGnTJrRo0QKtWrUq9hw7duxAbm5uiYV3SWNGRkaiRo0a+O6773Sx/v37w9/fH2+//Ta2bNlS5NiXL1+Gj4+P3k+DiIjIDB49AubP137l1zeDBgFr1mjffkhlYtUFNZmZEUssrMmBAweQmpqKzZs3Y/PmzQbH4+Li9Arq27dvl+p1787OzrplO97e3lCr1UhLS9Nb9pGXl4f09HT4lNNWQvlLPfKXfhSUmpoKd3d3ydnpX3/9FX/++Sfef//9Es8RFxeHmjVrom/fvsW2K27MK1euYM+ePXrPOgCAu7s7OnXqZLBfNRERWYG//tLOSv/yi/azQgEsXw6MHs0lHkZiQU1VRlxcHLy8vPDxxx8bHNu5cyd27dqFTz75RDezGxQUVOY11AV3hunTp4+uTXntDJPv8ccfh6enp+ROF0eOHCnyPHFxcZDJZMUuNQK0RXl8fDxGjBghWZiXdsxbt24BgOQ3Jg8fPsSjR4+KHdvX1xc//vgjMjIyOEtNRGQO//0vMGIEkJ6u/dy8ObB1KxAYaNG0KjsW1FQlKJVK7Ny5E5GRkZIP2Pn4+OCrr77Ct99+q3vJjjFrqAvuDFOwoJbaGSZ/l5D69evD0dGxzNc0cOBAbNy4ESkpKbpdbfbv348LFy5gypQpBu0fPnyIbdu2oVOnTnpb7UnZvHkzNBpNics9ShrTz88PNjY22LJlC8aNG6db9/zXX3/h0KFD6NSpU4nX+PHHH2Pu3Ll6DyUC2qUmXEdNRFRO8vKA6dOBmJh/Yy+/DCxbBhjxbxTpY0FNVUL+nt/PPfec5PEnn3wSnp6eiIuL0xXUxq6hLu3OMCtXrsTcuXMRHx+Prl276sXv3bun2xHku+++w19//QUAePXVV1Hzn7VrM2fOxLZt29CtWze89tpruH//PpYsWYKWLVti5MiRBrnlv7a+tFvg+fj46OUlpaQxPT09MWrUKHz22Wfo0aMHBgwYgOzsbKxatQpKpRIzZswodvxu3brhxRdfxPLly3Hx4kX07t0bGo0Ghw4dQrdu3Qwe9iUiIiNcvgwMHgzk/9TTxQWIjdXGqHxUwAtmyIKq65sS+/XrJ+RyuXjw4EGRbUaMGCHs7OzEnTt3TD5fbGysCAgIEPb29sLX11fExMTovSlQCCFmz54tAIj4+Hi9eIMGDQQAya/Cb99MTk4WPXv2FI6OjsLNzU0MHTpU/P3335I5DR48WNjZ2Yn09PRicz937pwAUOSbQMs65sOHD8WKFStEmzZthLOzs3B2dhbdunUTBw4cKHF8IYR49OiRWLJkiWjatKmwt7cXnp6e4tlnnxXHjh0rtl9V/bNMRFSuNm8WwsXl37cetmsnxMWLls7KqhnzpkSZENzstSo5ffo0WrRogeTkZARKrIe6cuUKAP1lDESVEf8sExEVIydH+36JTz/9NzZlCrBoEVDE9q+kVVItJYVLPoiIiIiqkjNngKgo4PRp7Wd3d2DjRu2bD6lCWO2rx4mIiIioDIQA1q7VvpQlv5ju3Fn7+nAW0xWKBTURERFRZZeVpd1b+uWXAaVSu5/0rFnAgQNA3bqWzq7K45IPIiIiosrs2DHtWw4vX9Z+rlMHiIsDune3bF7VCGeoiahS4vPURFTtCaF9y3GHDv8W0716aZd4sJg2KxbU1YxMJoNGo7F0GkQmE3zxCxFVZ+npQP/+2p07Hj4EatQAFi8Gvv8e8PKydHbVDpd8VDMODg7IzMxEXl4e7LltDlVSeXl5ePjwoVFvoCQiqvQOHQJeeAH456VgaNAA2LwZePJJy+ZVjXGGuppxdXUFAKSmpiIvL8/C2RCVXV5eHlJTUwH8++eZiKhaUKuBBQuArl3/LaYHDABOnGAxbWGcoa5mnJyc4O7ujoyMDFy+fBl2dnaQyWT80TlZPSEEhBB4+PAhAMDd3R1OTk4WzoqIyExSU4Fhw7S7dgCAgwMQEwOMH6/d0YMsigV1NSOTyeDl5QUnJydkZWVBpVLx4S6qFGQyGWxsbODo6AhXV1c4OTnxG0Eiqh5+/BF48UXg9m3t54AAYMsWoHVry+ZFOiyoqyGZTAZnZ2c4OztbOhUiIiIqysOH2r2kFy/+NzZ8OLByJcB/w60KC2oiIiIia/Pnn8CQIcDhw9rPTk7A6tXamWqyOiyoiYiIiKzJzp3A6NHAvXvaz61ba5d4BARYNC0qGnf5ICIiIrIGubnAxInAwIH/FtMTJgC//85i2spxhpqIiIjI0s6f174+/ORJ7Wc3N2DtWu22eGT1OENNREREZEmffw60a/dvMf3kk9q9pVlMVxosqImIiIgs4f597a4dw4cDDx5oY9OmAb/8AjRsaNHUqGy45IOIiIjI3E6e1C7xOH9e+9nTE/jiC6BXL8vmRUbhDDURERGRuQgBrFoFhIT8W0z36KEtsFlMV1osqImIiIjM4e5dICJCu3OHSgXY2AALFmjfhOjtbensyARc8kFERERU0X7/HRg8WPvCFgCoWxf46iugUyfL5kXlgjPURERERBVFowE++ADo3PnfYrpfPyApicV0FcIZaiIiIqKKkJYGvPSSdkkHANjZAUuWAJMmATKZZXOjcsWCmoiIiKi8HTgADB0K/P239rOvr/b14e3aWTYvqhBc8kFERERUXh49AmbNAp5++t9iesgQ4PhxFtNVGGeoiYiIiMrDX38BL7wAHDqk/axQACtWAKNGcYlHFceCmoiIiMhU330HjBgBZGRoPwcGapd4BAZaNC0yDy75ICIiIjKWSgVMmQI899y/xfTYscCRIyymqxHOUBMREREZ49Il7d7Sx45pP7u6ArGx2leKU7XCgpqIiIiorDZv1s5EZ2drP7dvr13i0bixZfMii+CSDyIiIqLSyskBxozR7tyRX0y//jrw668spqsxzlATERERlcbp09rlHKdPaz97eAAbNwJhYZbNiyyOM9RERERExREC+PRTICjo32K6Sxft68NZTBNYUBMREREVLStLu7xj7FhAqdTuJ/3uu8D+/UDdupbOjqwEl3wQERERSUlM1C7xuHJF+9nbG4iLA7p1s2xeZHU4Q01ERERUkBBATAzQseO/xXTv3tolHiymSQJnqImIiIjy3bkDjBwJ/Pe/2s81agDvv6/dycOG85AkjQU1EREREQD88gvwwgvAjRvazw0bavebDgmxaFpk/fitFhEREVVvajUwb552OUd+MR0RAZw4wWKaSoUz1ERERFR9paYCQ4cC8fHazw4OwEcfAePGaXf0ICoFFtRERERUPe3ZA7z0EnD7tvZz06ba14e3amXZvKjSseolHyqVCtOmTYOPjw8UCgVCQkKwd+/eUvW9ceMGoqKi4ObmBldXV/Tv3x9X8p/ULWTt2rVo1qwZ5HI5/P39sWLFCoM258+fx5QpU9CxY0fI5XLIZDJcu3ZNcryGDRtCJpMZfI0fP96g7b179zB27Fh4enrCyckJ3bp1w/Hjx0t1jURERGSEhw+BadOAZ5/9t5geMUK7TR6LaTKCVc9QjxgxAtu3b8fkyZPh7++PDRs2oE+fPoiPj0enTp2K7Hf//n1069YNmZmZmDlzJuzs7BATE4PQ0FAkJSXBw8ND13bNmjUYP348Bg4ciNdffx2HDh3CpEmTkJOTg2nTpunaHT58GMuXL0fz5s3RrFkzJCUlFZt7mzZt8MYbb+jFmjRpovdZo9EgLCwMJ0+exJtvvolatWph1apV6Nq1K44dOwZ/f/8y3C0iIiIq0bVrwODBQEKC9rOTE/DJJ8CwYRZNiyo5YaUSEhIEALFkyRJdTKlUCl9fX9GhQ4di+y5evFgAEEeOHNHFzp49K2xtbcWMGTN0sZycHOHh4SHCwsL0+g8dOlQ4OTmJjIwMXSw9PV1kZWUJIYRYsmSJACCuXr0qef4GDRoYjClly5YtAoDYtm2bLpaWlibc3NzEkCFDSuwvJTk5WQAQycnJRvUnIiKqbJKShBg8WIiWLbW/JiUV0XD7diFq1hRCu9O0EG3aCHH+vDlTpUrAmFrKapd8bN++Hba2thg7dqwuJpfLMXr0aBw+fBgpKSnF9g0KCkJQUJAu1rRpU/To0QNbt27VxeLj45Geno7o6Gi9/hMmTMCDBw+we/duXczd3R0uLi5luoa8vDw8ePCg2Dxr166NAQMG6GKenp6IiorCN998A5VKVabzERERVTcnTwIdOmh3t/vjD+2vHTpo4zq5uUB0tHbnjsxMbWziRODwYaDQT4+JjGG1BfWJEyfQpEkTuLq66sWDg4MBoMglFxqNBqdOnUL79u0NjgUHB+Py5cvIzs7WnQOAQdt27drBxsZGd9wYBw4cgKOjI5ydndGwYUMsW7bMoM2JEyfwxBNPwKbQRvHBwcHIycnBhQsXij1HWloaTp8+rfd16dIlo3MmIiKqbBYtApRK/ZhSqY0DAM6d0259t3q19rObG7BzJ7BiBSCXmzNVqsKsdg11amoqvL29DeL5sZs3b0r2y8jIgEqlKrFvQEAAUlNTYWtrCy8vL7129vb28PDwKPIcJWnVqhU6deqEgIAApKenY8OGDZg8eTJu3ryJxYsX611jly5dis2zZcuWRZ5n1apVmDt3rlE5EhERVQWnT0vHz5wBsHGjdmY6J0cb7NgR2LQJaNDAbPlR9WC1BbVSqYSDg4NBXP7Pd5PKwt+OFugHoFR9lUol7O3tJceRy+VFnqMk3377rd7nkSNH4tlnn8XSpUvx6quvom7durrzG3ON+aKjoxEZGakXu3TpEsLDw43Km4iIqLIJDNQu9SjIGdlYkTUBGPGFNiCTAdOnA3PnAnZ25k+SqjyrLagVCoXkGuLc3Fzd8aL6AShVX4VCgby8PMlxcnNzizxHWclkMkyZMgU//vgjfv75Zwz750liY68xn5eXl8HsOhERUXUyfTrwzTf/LvtojSRsk0XB/9pFbcDLC/jyS+CZZyyXJFV5VruG2tvbG6mpqQbx/JiPj49kP3d3dzg4OJSqr7e3N9RqNdLS0vTa5eXlIT09vchzGKNevXoAtEtS8hl7jURERKTVurX22cLBgwQW+nyMozYh8Bf/FNNPP619OpHFNFUwqy2o27RpgwsXLiArK0svnvDPvpFt2rSR7GdjY4OWLVsiMTHR4FhCQgIaN26s260jf4zCbRMTE6HRaIo8hzHyXyrj6empi7Vp0wbHjx+HRqMxyNPR0dFg32oiIiIy1Fp9HF9tscHMmxNhp8kDbG2BhQuBH38E6tSxdHpUDVhtQR0REQG1Wo3Y2FhdTKVSYf369QgJCdHN+F6/fh3nzp0z6Hv06FG9Qvn8+fM4cOCA3prj7t27w93dHavzn/z9x+rVq+Ho6IiwsLAy552RkQG1Wq0Xe/jwIRYtWgR7e3t069ZNL89bt25h586dutidO3ewbds29OvXT3J9NRERERUQGQm0a/fv53r1gJ9/BmbOBGystsyhKsZq11CHhIQgMjISM2bMQFpaGvz8/LBx40Zcu3YNa9eu1bV76aWXcPDgQQghdLHo6Gh8+umnCAsLw9SpU2FnZ4elS5eidu3aem8vVCgUmD9/PiZMmIDIyEj06tULhw4dwpdffomFCxfC3d1d1zYzM1P3SvJff/0VALBy5Uq4ubnBzc0NEydOBKB9IHHBggWIiIhAo0aNkJGRgU2bNiE5ORnvvfce6hT4TjkiIgJPPvkkRo4ciTNnzujelKhWq7l7BxERUXEePgSkNhZISgIK/PtNZBYV954Z0ymVSjF16lRRp04d4eDgIIKCgsSePXv02oSGhgqpy0hJSRERERHC1dVVODs7i759+4qLFy9Knic2NlYEBAQIe3t74evrK2JiYoRGo9Frc/XqVQFA8qtBgwa6domJiaJfv37i8ccfF/b29sLZ2Vl06tRJbN26VfLcGRkZYvTo0cLDw0M4OjqK0NBQcfTo0TLeqX/xTYlERFTl7dv379sOC36p1ZbOjKoAY2opmRAFpnap0jt9+jRatGiB5ORkBAYGWjodIiKi8vXkk8A/z1PpvPIKsGqVZfKhKseYWspql3wQERER6Tx4ADg7G8bPngWaNjV/PkQFcLU+ERERWbetW6WLaY2GxTRZBRbUREREZL1q1wYGDdKPzZ2rXTUtk1kmJ6JCuOSDiIiIrM+dO0CBdzfopKQAdeuaPx+iYnCGmoiIiKzLypXSxbQQLKbJKnGGmoiIiKyH1DKONWuAsWPNnwtRKbGgJiIiIsv780+gYUPDeEYG8NhjZk+HqCy45IOIiIgs6513DIvpBg20SzxYTFMlwBlqIiIisgwhABuJub2dO4Hnnzd/PkRGYkFNRERE5pecDLRsaRjPyQEUCvPnQ2QCLvkgIiIi8xo1yrCY7tpVO2PNYpoqIc5QExERkXmo1UANidLj4EGgSxfz50NUTlhQExERUcX79VegUyfD+MOH0kU2USXCJR9ERERUsXr2NCymhw3TLvFgMU1VAP8UExERUcXIzZVeE33yJNCqlfnzIaognKEmIiKi8vftt9LFtEbDYpqqHBbUREREVL6aNAH699ePvfWWdomH1KvFiSo5LvkgIiKi8nHvnvSbDa9cARo1Mns6RObCGWoiIiIy3bp10sW0ECymqcpjQU1ERESmsbMDRo/Wj8XEaItpomqASz6IiIjIOKmpgI+PYTwtDfD0NH8+RBbCGWoiIiIqu/ffNyymH3tMOyvNYpqqGc5QExERUekJAdhIzMfFxQEvvGD+fIisAAtqIiIiKp2LF7Vb4hWWlQW4uJg/HyIrwSUfREREVLJJkwyL6bZttTPWLKapmuMMNRERERVNowFsbQ3je/YAvXqZPx8iK8SCmoiIiKQlJgJBQYZxlQqwtzd/PkRWiks+iIiIyNCAAYbFdP/+2iUeLKaJ9HCGmoiIiP6Vlwc4OBjGjxyRnq0mIs5QExER0T/27pUuptVqFtNExWBBTURERED79kDPnvqxiROL3neaiHS45IOIiKg6u39fetu78+el95wmIgP8lpOIiKi62rxZupjWaFhME5UBC2oiIqLqqFYtYMgQ/djChdolHjKZZXIiqqS45IOIiKg6uX0b8PIyjN+4Afj4mD8foiqAM9RERETVxfLl0sW0ECymiUzAGWoiIqLqQGoZx6efAi+/bP5ciKoYFtRERERV2bVrQKNGhvG7dwE3N3NnQ1QlcckHERFRVTVjhmEx7eurXeLBYpqo3HCGmoiIqKop6mUs33wDPPec+fMhquJYUBMREVUlf/wBtGplGM/JARQK8+dDVA1wyQcREVFVMXy4YTHdo4d2xprFNFGF4Qw1ERFRZffoEWBnZxg/dAjo1Mn8+RBVM5yhJiIiqswOHZIuph8+ZDFNZCYsqImIiCqr7t2BLl30Y8OHa5d41OAPoYnMhf+3ERERVTZKJeDoaBg/dQpo2dL8+RBVc1Y9Q61SqTBt2jT4+PhAoVAgJCQEe/fuLVXfGzduICoqCm5ubnB1dUX//v1x5coVybZr165Fs2bNIJfL4e/vjxUrVhi0OX/+PKZMmYKOHTtCLpdDJpPh2rVrBu3S09OxZMkSdOnSBZ6ennBzc8OTTz6JLVu2GLT9+eefIZPJJL9+//33Ul0nERFVM19/LV1MazQspoksxKpnqEeMGIHt27dj8uTJ8Pf3x4YNG9CnTx/Ex8ejUzHrwu7fv49u3bohMzMTM2fOhJ2dHWJiYhAaGoqkpCR4eHjo2q5Zswbjx4/HwIED8frrr+PQoUOYNGkScnJyMG3aNF27w4cPY/ny5WjevDmaNWuGpKQkyXMfPnwYb7/9Nvr06YN33nkHNWrUwI4dOzB48GCcOXMGc+fONegzadIkBAUF6cX8/PzKeLeIiKjKa9wYuHpVPzZzJrBwoWXyISItYaUSEhIEALFkyRJdTKlUCl9fX9GhQ4di+y5evFgAEEeOHNHFzp49K2xtbcWMGTN0sZycHOHh4SHCwsL0+g8dOlQ4OTmJjIwMXSw9PV1kZWUJIYRYsmSJACCuXr1qcO4rV66Ia9eu6cU0Go3o3r27cHBwEPfv39fF4+PjBQCxbdu2Yq+nLJKTkwUAkZycXG5jEhGRhWVkCKFdGa3/VejfGyIynTG1lNUu+di+fTtsbW0xduxYXUwul2P06NE4fPgwUlJSiu0bFBSkN+vbtGlT9OjRA1u3btXF4uPjkZ6ejujoaL3+EyZMwIMHD7B7925dzN3dHS4uLiXm3ahRIzRo0EAvJpPJEB4eDpVKVeSyk+zsbDx69KjE8YmIqJr57DPA3d0wLgRQ6N8bIrIMqy2oT5w4gSZNmsDV1VUvHhwcDABFLrnQaDQ4deoU2rdvb3AsODgYly9fRnZ2tu4cAAzatmvXDjY2Nrrj5eHvv/8GANSqVcvg2MiRI+Hq6gq5XI5u3bohMTGxVGOmpaXh9OnTel+XLl0qt5yJiMjCZDJgzBj92PLl2mKaiKyG1a6hTk1Nhbe3t0E8P3bz5k3JfhkZGVCpVCX2DQgIQGpqKmxtbeHl5aXXzt7eHh4eHkWeo6wyMjLw2WefoXPnznp52dvbY+DAgejTpw9q1aqFM2fO4D//+Q86d+6M3377DW3bti123FWrVkmuySYiokru5k3g8ccN47dvAxITM0RkWVZbUCuVSjg4OBjE5XK57nhR/QCUqq9SqYS9vb3kOHK5vMhzlIVGo8HQoUNx7949g91DOnbsiI4dO+o+P/fcc4iIiECrVq0wY8YM7Nmzp9ixo6OjERkZqRe7dOkSwsPDTc6biIgsZOFC4J139GOenkBammXyIaISWW1BrVAooFKpDOK5ubm640X1A1CqvgqFAnl5eZLj5ObmFnmOsnj11VexZ88efP7552jdunWJ7f38/NC/f3/s3LkTarUatra2Rbb18vIymF0nIqJKSgjARmIl5ldfAYMHmz8fIio1q11D7e3tjdTUVIN4fszHx0eyn7u7OxwcHErV19vbG2q1GmmFvuvPy8tDenp6kecorblz52LVqlVYtGgRXnzxxVL3q1evHvLy8vDgwQOTzk9ERJXE+fPSxXR2NotpokrAagvqNm3a4MKFC8jKytKLJyQk6I5LsbGxQcuWLSUf7EtISEDjxo11u3Xkj1G4bWJiIjQaTZHnKI2PP/4Yc+bMweTJk/X2sy6NK1euQC6Xw9nZ2ejzExFRJTFhAtC0qX6sfXvtjDX/HSCqFKy2oI6IiIBarUZsbKwuplKpsH79eoSEhKBevXoAgOvXr+PcuXMGfY8ePapXKJ8/fx4HDhzQW3PcvXt3uLu7Y/Xq1Xr9V69eDUdHR4SFhRmV+5YtWzBp0iQMHToUS5cuLbLd7du3DWInT57Et99+i549e8JGaraCiIiqBo1Gu4vHqlX68b17gaNHLZMTERnFatdQh4SEIDIyEjNmzEBaWhr8/PywceNGXLt2DWvXrtW1e+mll3Dw4EGIAlsIRUdH49NPP0VYWBimTp0KOzs7LF26FLVr18Ybb7yha6dQKDB//nxMmDABkZGR6NWrFw4dOoQvv/wSCxcuhHuBfT8zMzN1DxX++uuvAICVK1fCzc0Nbm5umDhxIgDgyJEjeOmll+Dh4YEePXogLi5O77o6duyIxo0bAwAGDRoEhUKBjh07wsvLC2fOnEFsbCwcHR2xaNGicr6jRERkNY4cAUJCDOMqFVDEw/JEZMUq7j0zplMqlWLq1KmiTp06wsHBQQQFBYk9e/botQkNDRVSl5GSkiIiIiKEq6urcHZ2Fn379hUXL16UPE9sbKwICAgQ9vb2wtfXV8TExAiNRqPX5urVqwKA5FeDBg107davX19kOwBi/fr1urbLli0TwcHBwt3dXdSoUUN4e3uLYcOGFZlnafBNiUREVq5fP8M3Hg4caOmsiOgfxtRSMiG4O3xVcvr0abRo0QLJyckIDAy0dDpERJQvLw+Q2NIViYlAu3bmz4eIJBlTS3GRLhERUUX78UfpYlqtZjFNVAWwoCYiIqpIbdsCvXvrxyZNKnrfaSKqdKz2oUQiIqJKLTsbcHU1jF+8CPj5mT8fIqow/NaYiIiovMXFSRfTQrCYJqqCWFATERGVJzc3YNgw/dj772uLaSKqkrjkg4iIqDykpQG1axvGb94EvL3Nnw8RmQ1nqImIiEwVE2NYTNvZaWelWUwTVXmcoSYiIjKFTGYYW7cOGDnS/LkQkUWwoCYiIjLGlSuAr69h/N49oGZNs6dDRJbDJR9ERERlNW2aYTEdEKBd4sFimqja4Qw1ERFRaRX1MpbvvgP69jV/PkRkFVhQExERlcbJk0CbNoZxpRKQy82eDhFZDy75ICIiKsmwYYbFdK9e2hlrFtNE1R5nqImIiIry6JF2+7vCfv0V6NjR/PkQkVXiDDUREZGUgweli+lHj1hME5EeFtRERESFhYYCXbvqx0aN0i7xsLW1SEpEZL245IOIiChfTg7g5GQYT04GAgPNnw8RVQqcoSYiIgKAnTuli2mNhsU0ERWLBTUREVH9+sDAgfqxWbO0SzykXi1ORFQAl3wQEVH1dfcu4O5uGP/zT22RTURUCpyhJiKi6ik2VrqYFoLFNBGVCQtqIiKqfmQyYNw4/djHH2uLaSKiMuKSDyIiqj7++guoV88wfucO4OFh/nyIqEqosBnq9PR0zJs3D/Pnz6+oUxAREZXevHmGxXSdOtpZaRbTRGSCCpuhvnPnDubMmQOZTIZZs2ZV1GmIiIiKJwRgIzF/tHUrEBlp/nyIqMqpsIK6fv36iI+Pr6jhiYiISnbuHNCsmWH8/n3pPaeJiIxQYUs+FAoFQkNDERoaWlGnICIiKtr48YbF9JNPamesWUwTUTniQ4lERFS1qNVADYl/3vbvB7p3N38+RFTlVVhBnZ6ejo8//phrqImIyHx+/x3o0MEwnpcH2NmZPx8iqhYqbMlH/kOJc+bMqahTEBER/atvX8NiOipKu8SDxTQRVSA+lEhERJWbSgXI5Ybx48eBtm3Nnw8RVTsVVlDnP5RIRERUYX74AejTxzCuVktvlUdEVAH4tw0REVVOLVsaFtOvv170vtNERBWEu3wQEVHlkpUF1KxpGL90CfD1NX8+RFTt8dXjRERUeXzxhXQxLQSLaSKyGO7yQURElYOzM/DSS/qxDz7QFtNERBbEXT6IiMi63boF1KljGE9NlY4TEZkZd/kgIiLr9Z//AG++qR9TKICcHMvkQ0QkgQ8lEhGRdZLJDGMbNgDDh5s9FSKi4rCgJiIi63L5MuDnZxjPzARcXc2fDxFRCbhRJxERWY+pUw2L6cBA7YOHLKaJyEpxhpqIiCyvqJex7N4t/SZEIiIrwoKaiIgsKykJaNvWMJ6bCzg4mD0dIqKyKreC+v79+7h79y6ExH6g9evXL6/TEBFRVTJkCLB5s37s2WeB77+3TD5EREYwqaDOzc3F3LlzsXbtWqSnpxfZTq1Wm3IaIiKqah4+BOztDeO//QZ06GD+fIiITGBSQR0dHY2NGzciPDwcnTt3xmOPPVZeeRERUVV14ADQo4dh/NEjwNbW/PkQEZnIpF0+du7ciZdffhk7duzA5MmTMXz4cMkvY6lUKkybNg0+Pj5QKBQICQnB3r17S9X3xo0biIqKgpubG1xdXdG/f39cuXJFsu3atWvRrFkzyOVy+Pv7Y8WKFQZtzp8/jylTpqBjx46Qy+WQyWS4du1akef/9ttv8cQTT0Aul6N+/fqYPXs2Hj16ZNDu3r17GDt2LDw9PeHk5IRu3brh+PHjpbpGIqJKp2NHw2J6zBjtQ4kspomokjKpoJbJZHjiiSfKKxcDI0aMwNKlSzF06FAsW7YMtra26NOnD/73v/8V2+/+/fvo1q0bDh48iJkzZ2Lu3Lk4ceIEQkNDDZamrFmzBi+//DICAwOxYsUKdOjQAZMmTcLixYv12h0+fBjLly9HdnY2mjVrVuz5f/jhB4SHh8PNzQ0rVqxAeHg4FixYgFdffVWvnUajQVhYGDZt2oSJEyfigw8+QFpaGrp27YqLFy+W4U4REVm5Bw+0L2o5fFg/fvo0EBtrmZyIiMqLMMHw4cNFRESEKUMUKSEhQQAQS5Ys0cWUSqXw9fUVHTp0KLbv4sWLBQBx5MgRXezs2bPC1tZWzJgxQxfLyckRHh4eIiwsTK//0KFDhZOTk8jIyNDF0tPTRVZWlhBCiCVLlggA4urVq5Lnb968uWjdurV4+PChLvb2228LmUwmzp49q4tt2bJFABDbtm3TxdLS0oSbm5sYMmRIsddYlOTkZAFAJCcnG9WfiKjcbdsmhHYOWv9Lo7F0ZkREBoyppUyaoZ41axauXLmCsWPH4tixY7h9+zYyMjIMvoyxfft22NraYuzYsbqYXC7H6NGjcfjwYaSkpBTbNygoCEFBQbpY06ZN0aNHD2zdulUXi4+PR3p6OqKjo/X6T5gwAQ8ePMDu3bt1MXd3d7i4uJSY95kzZ3DmzBmMHTsWNWr8u0Q9OjoaQghs375dL8/atWtjwIABupinpyeioqLwzTffQKVSlXg+IiKr9vjjQGSkfmzOHG1JLfVqcSKiSsikhxL9/f0BACdOnMDatWuLbGfMLh8nTpxAkyZN4FrozVjBwcEAgKSkJNSrV8+gn0ajwalTpzBq1CiDY8HBwfjpp5+QnZ0NFxcXnDhxAgDQvn17vXbt2rWDjY0NTpw4gWHDhpU5b6kxfXx8ULduXd3x/LZPPPEEbAq9zCA4OBixsbG4cOECWrZsWeS50tLScPv2bb3YpUuXypQvEVGFyMgAPDwM4ykpQN265s+HiKgCmVRQv/vuu5BV0AxDamoqvL29DeL5sZs3b0r2y8jIgEqlKrFvQEAAUlNTYWtrCy8vL7129vb28PDwKPIcJeVd8FyFz19wzNTUVHTp0qXYPIsrqFetWoW5c+eWOUciogq1ejVQ6Cd/ALSz0kREVZBJBfWcOXPKKQ1DSqUSDhJvyJLL5brjRfUDUKq+SqUS9lL7oP7TtqhzlJR3cefPysrSa2vMNeaLjo5GZKEfpV66dAnh4eFlTZuIqHxITbKsXg2MH2/+XIiIzMRqXz2uUCgk1xDn5ubqjhfVD0Cp+ioUCuTl5UmOk5ubW+Q5Ssq7uPMXHNPYa8zn5eVlMLtORGQRKSmA1Ftx09MBd3fz50NEZEYmPZSYT6VS4fDhw/jmm29w586d8hgS3t7euuUTBeXHfHx8JPu5u7vDwcGhVH29vb2hVquRlpam1y4vLw/p6elFnqOkvAueq/D5C45p7DUSEVmVOXMMi+l69bRLPFhME1E1YHJBvXz5cnh7e6NTp04YMGAATp06BQC4c+cOatWqhXXr1hk1bps2bXDhwgW9JRIAkJCQoDsuxcbGBi1btkRiYqLBsYSEBDRu3Fi3W0f+GIXbJiYmQqPRFHmOkvKWGvPmzZv466+/9MZs06YNjh8/Do1GY5Cno6MjmjRpUubzExGZTf5OHYWf5di+Hbh+3TI5ERFZgEkF9fr16zF58mT07t0ba9euhSjwwEmtWrXQvXt3bN682aixIyIioFarEVtgw3+VSoX169cjJCREt8PH9evXce7cOYO+R48e1Stqz58/jwMHDuitOe7evTvc3d2xevVqvf6rV6+Go6MjwsLCypx3YGAgmjZtitjYWL3dTVavXg2ZTIaIiAi9PG/duoWdO3fqYnfu3MG2bdvQr18/yfXVRERW4cwZwEbin5AHD4CBA82fDxGRBZm0hvrDDz9E//79sWnTJoM3EALa7eeWL19u1NghISGIjIzEjBkzkJaWBj8/P2zcuBHXrl3T26LvpZdewsGDB/WK+ejoaHz66acICwvD1KlTYWdnh6VLl6J27dp44403dO0UCgXmz5+PCRMmIDIyEr169cKhQ4fw5ZdfYuHChXAv8KPKzMxM3SvJf/31VwDAypUr4ebmBjc3N0ycOFHXdsmSJXjuuefQs2dPDB48GMnJyVi5ciVefvllvbcsRkRE4Mknn8TIkSNx5swZ1KpVC6tWrYJarebuHURkvV5+GSi8VepTTwElvMWWiKjKMuVNMg4ODmLNmjVCCCHu3LkjZDKZ2L9/v+54bGyscHBwMHp8pVIppk6dKurUqSMcHBxEUFCQ2LNnj16b0NBQIXUZKSkpIiIiQri6ugpnZ2fRt29fcfHiRcnzxMbGioCAAGFvby98fX1FTEyM0BR6g9fVq1cFAMmvBg0aGIy5a9cu0aZNG+Hg4CDq1q0r3nnnHZGXl2fQLiMjQ4wePVp4eHgIR0dHERoaKo4ePVqGu6SPb0okopIkJQkxeLAQLVtqf01KKmXHR4+k33gYH1+R6RIRmZUxtZRMCOM3Bq1Tpw4mTZqEmTNnIj09HZ6enti3bx+6d+8OAJgyZQp27dqFa9eumVj2U2mdPn0aLVq0QHJyMgIDAy2dDhFZmZMngQ4dgIK7cioUwOHDQOvWxXT87TftLHRhDx8CNax2wygiojIzppYyaQ11nz59EBsbi3v37kkm8+mnn+K5554z5RRERFSOFi3SL6YB7edFi4rp9OyzhsX0Cy9o56dZTBMRmbaGesGCBQgJCUGLFi3Qr18/yGQybNy4EevWrcOOHTvg7e2Nd999t7xyJSIiE50+LR0/c0YimJurnb4u7MQJwIhdkIiIqiqTZqh9fHxw7Ngx9O7dG1u2bIEQAl988QW+++47DBkyBL///jtq1apVXrkSEZGJivrpZfPmhQK7d0sX0xoNi2kiokJM3ofay8sLn332GTIyMnDr1i2kpqbi7t27WLduHd/iR0RkZaZPN6yTFQptXKd5c6BvX/1GU6f+u+80ERHpKdfFb56enuU5HBERlbPWrbUPIC5apF3m0by5tphu3RpAZibg5mbY6coVoFEjc6dKRFRp8GkSIqJqpnVr4KuvCgU3bABGjjRsbPxGUERE1YbJSz6IiKiSk8sNi+kPP2QxTURUSpyhJiKqrv7+G/D2lo7Xrm3+fIiIKimTZqj9/Pwwf/788sqFiIjM5YMPDItpFxftrDSLaSKiMjFphvrKlStITEzEsWPHcOHCBbi6uqJZs2Zo3LhxeeVHRETlTWqnji++AIYNM38uRERVgMlLPv773//iv//9L/LfYC6TyRAYGIiZM2di8ODBJidIRETl5NIlwN/fMJ6VpZ2dJiIio5j8UKKdnR3mzJmDn3/+GT/99BMWLlwIe3t7DB06FOPHjy+PHImIyFRTphgW061aaZd4sJgmIjKJyTPUU6ZMwaxZs3Sfn376aUyfPh0xMTGYOnUqOnTogOHDh5t6GiIiMoZGA9jaGsZ/+AHo3dv8+RARVUEmzVArFArUrVtX8tiUKVMwaNAgrFixwpRTEBGRsY4fly6mc3NZTBMRlSOTCuqmTZti9+7dRR7v3Lkzzpw5Y8opiIjIGJGRQLt2+rF+/bRLPBwcLJMTEVEVZVJBPW7cOOzZswevvvoqlEqlwfFff/0Vjo6OppyCiIjK4uFD7S4e27frxxMSgG+/tUxORERVnElrqMeOHYuzZ89i2bJl2Lx5M5599lm0aNEC9vb22LdvH3744QeMGDGinFIlIqJi7d8PPP20YVytBmz4Ylwioopi8kOJMTExGDBgAGJiYvD111/jyy+/1B0LDw9HTEyMqacgIqKShIQAR47ox155BVi1yjL5EBFVI+Xy6vHOnTujc+fOUKvVuHbtGrKzs1G/fn24u7uXx/BERFSUBw8AZ2fD+NmzQNOm5s+HiKgaKpeCOp+trS18fX3Lc0giIirKli2A1Au0NBrptyESEVGF4KI6IqLKqE4dw2J6/nztLh4spomIzKpcZ6iJiKiCpacDtWoZxv/6C3j8cfPnQ0REnKEmIqo0Pv5YupgWgsU0EZEFcYaaiKgykFrGERsLjBlj/lyIiEgPC2oiImv2559Aw4aG8YwM4LHHzJ4OEREZ4pIPIiJr9c47hsV0w4baJR4spomIrAZnqImIrI0Q0m823LULCA83ezpERFQ8FtRERNYkORlo2dIwnpMDKBTmz4eIiErEJR9ERNZi1CjDYrprV+2MNYtpIiKrxRlqIiJLe/QIsLMzjB88CHTpYv58iIioTFhQExFZ0q+/Ap06GcYfPgRq8K9oIqLKgEs+iIgspWdPw2L6xRe1SzxYTBMRVRr8G5uIyNxyc6XXRJ88CbRqZf58iIjIJJyhJiIyp2+/lS6mNRoW00RElRQLaiIic2nSBOjfXz82fbp2iYfUq8WJiKhS4JIPIqKKdu+e9JsNr16Vfq04ERFVKpyhJiKqSOvWSRfTQrCYJiKqIlhQExFVlBo1gNGj9WMffaQtpomIqMrgkg8iovJ28ybw+OOG8bQ0wNPT/PkQEVGF4gw1EVF5eu89w2L6sce0s9IspomIqiTOUBMRlQchABuJOYpNm4AhQ8yfDxERmQ0LaiIiU128qN0Sr7DsbMDZ2fz5EBGRWXHJBxGRKSZNMiymn3hCO2PNYpqIqFpgQU1E1d7Jk9pVGa1aaX89ebIUnTQa7ctYVqzQj//4I3DsWIXkSURE1olLPoioWjt5EujQAVAqtZ//+AP45hvg8GGgdesiOiUmAkFBhnGVCrC3r7BciYjIOnGGmoiqtUWL/i2m8ymV2rikAQMMi+nwcO0SDxbTRETVklUX1CqVCtOmTYOPjw8UCgVCQkKwd+/eUvW9ceMGoqKi4ObmBldXV/Tv3x9XrlyRbLt27Vo0a9YMcrkc/v7+WFH4R7hlGHPDhg2QyWRFfsXFxenazpkzR7KNXC4v5R0iIlOdPi0dP3OmUCAvT7vEY9cu/fiRI4YxIiKqVqx6yceIESOwfft2TJ48Gf7+/tiwYQP69OmD+Ph4dOrUqch+9+/fR7du3ZCZmYmZM2fCzs4OMTExCA0NRVJSEjw8PHRt16xZg/Hjx2PgwIF4/fXXcejQIUyaNAk5OTmYNm1amcfs0qULvvjiC4OcYmJicPLkSfTo0cPg2OrVq+Fc4OElW1tbo+4XEZVdYKB2mUdhzZsX+LB3L9Czp2EjtVp6qzwiIqpehJVKSEgQAMSSJUt0MaVSKXx9fUWHDh2K7bt48WIBQBw5ckQXO3v2rLC1tRUzZszQxXJycoSHh4cICwvT6z906FDh5OQkMjIyyjymlJycHOHi4iKeeeYZvfjs2bMFAHH79u1i+5dFcnKyACCSk5PLbUyiqiwpSQiFQgjtmg3tl0KhjQshhHjiCf2DgBATJ1o0ZyIiqjjG1FJWO7Wyfft22NraYuzYsbqYXC7H6NGjcfjwYaSkpBTbNygoCEEF1jk2bdoUPXr0wNatW3Wx+Ph4pKenIzo6Wq//hAkT8ODBA+zevbvMY0r57rvvkJ2djaFDh0oeF0IgKysLQohixyGi8te6tfYBxMGDtbt8DB78zwOJvve1SzyOH9fvcP684c4eRERUrVltQX3ixAk0adIErq6uevHg4GAAQFJSkmQ/jUaDU6dOoX379gbHgoODcfnyZWRnZ+vOAcCgbbt27WBjY6M7XpYxpcTFxUGhUGDAgAGSxxs3boyaNWvCxcUFw4YNw61bt4ocq6C0tDScPn1a7+vSpUul6ktE/2rdGvjqK+2OH199BbQ+8xXg4mLYUKORfoELERFVa1a7hjo1NRXe3t4G8fzYzZs3JftlZGRApVKV2DcgIACpqamwtbWFl5eXXjt7e3t4eHjozlGWMaXy2bNnD8LDw+FS6B/oxx57DBMnTkSHDh3g4OCAQ4cO4eOPP8aRI0eQmJho8M1EYatWrcLcuXOLbUNEZeTpCdy5ox977z1gxgzL5ENERFbPagtqpVIJBwcHg3j+DhjKwvtcFegHoFR9lUol7IvY5koul+u1K+2YhW3fvh15eXmSyz1ee+01vc8DBw5EcHAwhg4dilWrVmH69OmSY+aLjo5GZGSkXuzSpUsIDw8vth8RSbhxA6hbVzru42P+fIiIqNKw2iUfCoUCKpXKIJ6bm6s7XlQ/AKXqq1AokJeXJzlObm6uXrvSjllYXFwc3N3d8eyzz0oeL+yFF15AnTp1sG/fvhLbenl5ITAwUO/Lz8+vVOchogJefdWwmLax0T6CyGKaiIhKYLUFtbe3N1JTUw3i+TGfIv6Rc3d3h4ODQ6n6ent7Q61WIy0tTa9dXl4e0tPTde3KMmZB169fx6FDhxAZGQk7O7sir7WwevXqISMjo9TticgEMhmwcqV+7LPPtFviERERlYLVFtRt2rTBhQsXkJWVpRdPSEjQHZdiY2ODli1bIjEx0eBYQkICGjdurFvLnD9G4baJiYnQaDS642UZs6CvvvoKQogid/eQIoTAtWvX4OnpWeo+RGSEM2e0xXRhaWnA6NHmz4eIiCotqy2oIyIioFarERsbq4upVCqsX78eISEhqFevHgDtLPC5c+cM+h49elSvAD5//jwOHDigt+a4e/fucHd3x+rVq/X6r169Go6OjggLCyvzmAVt2rQJ9evXL/IlNLdv3zaIrV69Grdv30bv3r0l+xBROejXT/tGl8KE0D6USEREVAYyYcWbH0dFRWHXrl2YMmUK/Pz8sHHjRhw5cgT79+9Hly5dAABdu3bFwYMH9fZwzs7ORtu2bZGdnY2pU6fCzs4OS5cuhVqtRlJSkt7s76pVqzBhwgRERESgV69eOHToED7//HMsXLgQM2fONGpMAEhOTkbLli0xffp0vP/++5LX5+joiEGDBqFly5aQy+X43//+h82bN6N169b49ddf4ejoWOZ7dvr0abRo0QLJyckIlCoYiKozIaTfbLh6NTB+vPnzISIiq2NULVURb5gpL0qlUkydOlXUqVNHODg4iKCgILFnzx69NqGhoULqMlJSUkRERIRwdXUVzs7Oom/fvuLixYuS54mNjRUBAQHC3t5e+Pr6ipiYGKHRaEwac/r06QKAOHXqVJHX9/LLL4vmzZsLFxcXYWdnJ/z8/MS0adNEVlZWcbelWHxTIlERfvnF8I2HgBD371s6MyIisiLG1FJWPUNNZccZaiIJzZoBhZaGoUYN4OFDy+RDRERWy5haymrXUBMRmezhQ+2Dh4WL6V27WEwTEVG5YUFNRFXTzp2A1IubHj4E+PIjIiIqR1b7pkQiIqPlv5SloMBAIDnZMvkQEVGVxhlqIqo67t/XLvEoXEz/738spomIqMKwoCaiqmHVKkDiBUvQaICnnjJ/PkREVG1wyQcRVX5Sbzx87jngm2/MnwsREVU7LKiJqPJKSwNq1zaMnzmj3SqPiIjIDLjkg4gqp5kzpYtpIVhMExGRWXGGmogqH6klHpMmAcuWmT8XIiKq9lhQE1HlcekS4O9vGP/rL+Dxx82fDxEREbjkg4gqi2HDpItpIVhMExGRRbGgJiLrJoR2iUdcnH58yRLD/aaJiIgsgEs+iMh6JSYCQUGG8Xv3gJo1zZ4OERGRFBbURGSdOnQAfv/dMM5ZaSIisjJc8kFE1kWt1i7xKFxMx8WxmCYiIqvEGWoish579gDPPmsYz80FHBzMnw8REVEpsKAmIuvg4QFkZOjH6tYFUlIskw8REVEpcckHEVlWbq52iUfhYnrfPhbTRERUKbCgJiLL2bgRUCgM42o10KOH+fMhIiIyApd8EJFlSL0+PDQU+Plns6dCRERkCs5QE5F53b0rXUwfP85imoiIKiUW1ERkPu+/D7i7G8aFANq2NX8+RERE5YBLPojIPKRmpUeMANavN3sqRERE5YkFNRFVrJQUoH59w/iVK0CjRubPh4iIqJxxyQcRVZzoaOliWggW00REVGWwoCaiiiGTAatX68fmzOHrw4mIqMrhkg8iKl9//AG0amUYv30bqFXL/PkQERFVMM5QE1H5efZZ6WJaCBbTRERUZbGgJiLTCaFd4rFnj348NpZLPIiIqMrjkg8iMs3Bg0DXrobxBw8AR0ezp0NERGRuLKiJyHj+/sClS/oxhQLIybFMPkRERBbAJR9EVHYPH2qXeBQupr/9lsU0ERFVOyyoiahstm8H7O0N4w8fAv36mT8fIiIiC+OSDyIqPanXh7duDSQlmT0VIiIia8EZaiIqWXa2dDH9228spomIqNpjQU1ExVu+HHB1NYxrNECHDubPh4iIyMpwyQcRFU1qVnrgQO06aiIiIgLAgpqIpNy6BdSpYxg/dw4ICDB/PkRERFaMSz6ISN+0adLFtBAspomIiCRwhpqI/iW1xOP114EPPzR/LkRERJUEC2oiAi5eBJo0MYzfvAl4e5s/HyIiokqESz6IqrvBg6WLaSFYTBMREZUCC2qi6koI7RKPLVv040uXao8RERFRqXDJB1F1dOQIEBJiGM/MlN5zmoiIiIrEgpqougkOBo4eNYxzVpqIiMgoXPJBVF2o1dolHoWL6c2bWUwTERGZwKoLapVKhWnTpsHHxwcKhQIhISHYu3dvqfreuHEDUVFRcHNzg6urK/r3748rV65Itl27di2aNWsGuVwOf39/rFixwqQxZTKZ5NeiRYtMypPIaLt3AzUkfiClUgGDBpk/HyIioirEqpd8jBgxAtu3b8fkyZPh7++PDRs2oE+fPoiPj0enTp2K7Hf//n1069YNmZmZmDlzJuzs7BATE4PQ0FAkJSXBw8ND13bNmjUYP348Bg4ciNdffx2HDh3CpEmTkJOTg2nTphk1JgA888wzeOmll/Ribdu2NTpPIqPVrAlkZenHGjQArl2zSDpERERVjrBSCQkJAoBYsmSJLqZUKoWvr6/o0KFDsX0XL14sAIgjR47oYmfPnhW2trZixowZulhOTo7w8PAQYWFhev2HDh0qnJycREZGRpnHFEIIAGLChAklXmNZxiyt5ORkAUAkJycb1Z+qkJwcIbSLOfS/DhywdGZERERWy5haymqXfGzfvh22trYYO3asLiaXyzF69GgcPnwYKSkpxfYNCgpCUFCQLta0aVP06NEDW7du1cXi4+ORnp6O6Ohovf4TJkzAgwcPsHv37jKPWZBSqURubq7JeRKV2bp1gKOjYVytBrp1M38+REREVZjVFtQnTpxAkyZN4FpoC6/g4GAAQFJSkmQ/jUaDU6dOoX379gbHgoODcfnyZWRnZ+vOAcCgbbt27WBjY6M7XpYx823YsAFOTk5QKBRo3rw5Nm3aZHSeRUlLS8Pp06f1vi5dulRsH6oGZDJg9Gj9WI8e2vlpG6v9X56IiKjSsto11KmpqfCWeEtbfuzmzZuS/TIyMqBSqUrsGxAQgNTUVNja2sLLy0uvnb29PTw8PHTnKMuYANCxY0dERUWhUaNGuHnzJj7++GMMHToUmZmZeOWVV4waU8qqVaswd+7cIo9TNZORAUitu09KAlq3Nns6RERE1YXVFtRKpRIODg4GcblcrjteVD8ApeqrVCphb28vOY5cLtdrV9oxAeDXX3/VazNq1Ci0a9cOM2fOxIgRI6BQKMo8ppTo6GhERkbqxS5duoTw8PBi+1EVtGABMGuWYZzb4REREVU4qy2oFQoFVCqVQTx/TbJCoSiyH4BS9VUoFMjLy5McJzc3V69daceUYm9vj4kTJ2L8+PE4duwYOnXqZPKYAODl5WUwu07VkExmGBszBoiNNX8uRERE1ZDVFtTe3t64ceOGQTw1NRUA4OPjI9nP3d0dDg4OunbF9fX29oZarUZaWppeYZqXl4f09HRdu7KMWZR69eoB0C71KK8xqZr780+gYUPD+LVr2m3xiIiIyCys9gmlNm3a4MKFC8gqtH9uQkKC7rgUGxsbtGzZEomJiQbHEhIS0LhxY7i4uOiNUbhtYmIiNBqN7nhZxixK/staPD09y21MqsbGjJEupoVgMU1ERGRmVltQR0REQK1WI7bAj61VKhXWr1+PkJAQ3Yzv9evXce7cOYO+R48e1StWz58/jwMHDuitOe7evTvc3d2xevVqvf6rV6+Go6MjwsLCyjzm7du3Da4lOzsbH330EWrVqoV27dqVeUwiPTIZ8Nln+rF587hemoiIyEJkQljvv8JRUVHYtWsXpkyZAj8/P2zcuBFHjhzB/v370aVLFwBA165dcfDgQRS8jOzsbLRt2xbZ2dmYOnUq7OzssHTpUqjVaiQlJelmiQHtThkTJkxAREQEevXqhUOHDuHzzz/HwoULMXPmzDKPOWfOHHz99dfo168f6tevj9TUVKxbtw7Xr1/HF198gaFDhxqVZ2mdPn0aLVq0QHJyMgIDA8vcn6zYqVPSu3WkpwPu7ubPh4iIqAoyqpaqqLfMlAelUimmTp0q6tSpIxwcHERQUJDYs2ePXpvQ0FAhdRkpKSkiIiJCuLq6CmdnZ9G3b19x8eJFyfPExsaKgIAAYW9vL3x9fUVMTIzQaDRGjfnTTz+JZ555RtSpU0fY2dkJNzc30bNnT7F//37Jc5clz9LgmxKrqB49pN96SEREROXKmFrKqmeoqew4Q13FaDSAra1hfN06YORI8+dDRERUxRlTS1ntLh9E1d7PP0u/JjwnByhhS0UiIiIyHxbURNaoUSPt9ncFuboCmZkWSYeIiIiKZrW7fBBVS3l52l08ChfT//0vi2kiIiIrxYKayFps2QJIvIoejx4BBbZwJCIiIuvCJR9E1kDq9eHt2wNHj5o/FyIiIioTzlATWVJWlnQxnZDAYpqIiKiSYEFNZCkffQTUrGkY12iA4GCzp0NERETG4ZIPIkuQmpWOitKuoyYiIqJKhQU1kTmlpgI+PobxCxcAf3/z50NEREQm45IPInN54w3pYloIFtNERESVGAtqInOQyYClS/Vj06Zpi2kiIiKq1Ljkg6giXbgABAQYxv/+G6hd2/z5EBERUbnjDDVRRYmMlC6mhWAxTUREVIWwoCYqb0Jol3hs364fX76cSzyIiIiqIC75ICpPv/8OdOhgGM/KAlxczJ8PERERVTgW1ETlpW1bICnJMM5ZaSIioiqNSz6ITPXokXaJR+FieutWFtNERETVAGeoiUzx3XfAc88ZxlUqwN7e/PkQERGR2bGgJjKWkxOQk6Mf8/fXbpVHRERE1QaXfBCVVU6OdolH4WL64EEW00RERNUQC2qisvjsM+3MdGEaDdCli/nzISIiIovjkg+i0pLJDGO9ewM//GD+XIiIiMhqsKAmKklOjvSs9B9/AC1amD8fIiIisipc8kFUnJ9/liymTyYJFtNEREQEgAU1UdFeeAHo1k0v9Dx2QgaBDh2AkyctlBcRERFZFS75ICrs3j3gsccMwjVxD1moCQBQKoFFi4CvvjJzbkRERGR1OENNVNA33xgU09+6vQQZhK6YznfmjDkTIyIiImvFgpooX48eQHi4fuyXX/BV742SzZs3r/iUiIiIyPpxyQdRairg42MYz8kBFApMd9VOXCuV/x5SKIDp082XIhEREVkvzlBT9bZhg2Ex/eabgBDaqhlA69bA4cPA4MFAq1baXw8f1saJiIiIOENN1ZMQQGAgcPasfjwpSbJSbt2aDyASERGRNBbUVP1cuQL4+urHnJyAu3cBOzvL5ERERESVFpd8UPWydKlhMb14MXD/PotpIiIiMgpnqKl6ePQI8PTU7jFd0MWLgJ+fRVIiIiKiqoEz1FT1/fGHdva5YDHt5weo1SymiYiIyGQsqKlqmzlTuzVHQZ9+qp2ZtuEffyIiIjIdl3xQ1ZSbq9v2Ts+NG9J7ThMREREZiVN0VPX89pthMd2lC6DRsJgmIiKicseCmqqWl18GnnpKP7ZjB3DwICCTWSYnIiIiqtK45IOqhqwsoGZNw3h6OuDubv58iIiIqNrgDDVVfnv2GBbTkZHatyGymCYiIqIKxhlqqtyeew747jv92L59QI8elsmHiIiIqh0W1FQ53b4NeHkZxu/f175GnIiIiMhMuOSDKp/Nmw2L6eho7RIPFtNERERkZpyhpspDCCA4GEhM1I8nJGjjRERERBbAgpoqh5QUoH59w7hKBdjbmz8fIiIion9Y9ZIPlUqFadOmwcfHBwqFAiEhIdi7d2+p+t64cQNRUVFwc3ODq6sr+vfvjytXrki2Xbt2LZo1awa5XA5/f3+sWLHC6DFTUlIwd+5cBAcH47HHHkOtWrXQtWtX7Nu3z2C8DRs2QCaTSX79/fffpbrOamHVKsNies4c7Yw1i2kiIiKyMKueoR4xYgS2b9+OyZMnw9/fHxs2bECfPn0QHx+PTp06Fdnv/v376NatGzIzMzFz5kzY2dkhJiYGoaGhSEpKgoeHh67tmjVrMH78eAwcOBCvv/46Dh06hEmTJiEnJwfTpk0r85jffPMNFi9ejPDwcAwfPhyPHj3C559/jmeeeQbr1q3DyJEjDfKdN28eGjVqpBdzc3Mz8e5VAWq1tpC+eVM/fuYM0KyZZXIiIiIiKkxYqYSEBAFALFmyRBdTKpXC19dXdOjQodi+ixcvFgDEkSNHdLGzZ88KW1tbMWPGDF0sJydHeHh4iLCwML3+Q4cOFU5OTiIjI6PMYyYnJ4vbt2/rjZebmyuaNm0q6tatqxdfv369ACCOHj1a7PWURXJysgAgkpOTy21Mizh7VgjtHPS/Xz4+Qjx6ZOnMiIiIqAozppay2iUf27dvh62tLcaOHauLyeVyjB49GocPH0ZKSkqxfYOCghAUFKSLNW3aFD169MDWrVt1sfj4eKSnpyM6Olqv/4QJE/DgwQPs3r27zGMGBgaiVq1aeuM5ODigT58++Ouvv5CdnS2Zc3Z2NtRqdZHXVK3Mm2c4A71iBXDjBmBra5mciIiIiIpgtQX1iRMn0KRJE7i6uurFg//ZzSEpKUmyn0ajwalTp9C+fXuDY8HBwbh8+bKuqD1x4gQAGLRt164dbGxsdMfLMmZR/v77bzg6OsLR0dHgWLdu3eDq6gpHR0c899xzuHjxYrFjVVl5edqCefZs/fiffwITJ1omJyIiIqISWO0a6tTUVHh7exvE82M3C6+r/UdGRgZUKlWJfQMCApCamgpbW1t4FdrT2N7eHh4eHrpzlGVMKZcuXcLOnTsRGRkJ2wIzrI6OjhgxYoSuoD527BiWLl2Kjh074vjx46hXr57kePnS0tJw+/Ztg3NVSomJQIHZfwDAE09o4zKZZXIiIiIiKgWrLaiVSiUcHBwM4nK5XHe8qH4AStVXqVTCvohdIuRyuV670o5ZWE5ODiIjI6FQKLBo0SK9Y1FRUYiKitJ9Dg8PR69evdClSxcsXLgQn3zyieSY+VatWoW5c+cW26ZSmDRJu6SjoLg44IUXLJMPERERURlYbUGtUCigUqkM4rm5ubrjRfUDUKq+CoUCeXl5kuPk5ubqtSvtmAWp1WoMHjwYZ86cwQ8//AAfHx/JcxXUqVMnhISESG6zV1h0dDQiIyP1YpcuXUJ4eHiJfa3CgweAs7Nh/NYt6deKExEREVkhqy2ovb29cePGDYN4amoqABRZnLq7u8PBwUHXrri+3t7eUKvVSEtL01v2kZeXh/T0dF27soxZ0JgxY/Df//4XcXFx6N69e7HXW1C9evVw/vz5Ett5eXkZLFepNA4cAHr00I89+yzw/feWyYeIiIjISFb7UGKbNm1w4cIFZGVl6cUTEhJ0x6XY2NigZcuWSCz8eup/+jZu3BguLi56YxRum5iYCI1GozteljHzvfnmm1i/fj1iYmIwZMiQEq+3oCtXrsDT07NMfSqVwYMNi+ndu1lMExERUaVktQV1REQE1Go1YmNjdTGVSoX169cjJCRE98De9evXce7cOYO+R48e1SuAz58/jwMHDugtkejevTvc3d2xevVqvf6rV6+Go6MjwsLCyjwmACxZsgT/+c9/MHPmTLz22mtFXmPhBwoB4Pvvv8exY8fQu3fvIvtVWnfvah8w3LJFP56ZCfTpY5mciIiIiEwkE0IISydRlKioKOzatQtTpkyBn58fNm7ciCNHjmD//v3o0qULAKBr1644ePAgCl5GdnY22rZti+zsbEydOhV2dnZYunQp1Go1kpKS9GZ/V61ahQkTJiAiIgK9evXCoUOH8Pnnn2PhwoWYOXNmmcfctWsXBgwYAH9/f7z77rsG1/TMM8+gdu3aAAB/f3+0bdsW7du3R82aNXH8+HGsW7cO3t7eOHr0qK5dWZw+fRotWrRAcnIyAgMDy9y/wuzaBQwYoB8bORJYt84y+RARERFJMKqWqqi3zJQHpVIppk6dKurUqSMcHBxEUFCQ2LNnj16b0NBQIXUZKSkpIiIiQri6ugpnZ2fRt29fcfHiRcnzxMbGioCAAGFvby98fX1FTEyM0Gg0Ro05e/ZsAaDIr/j4eF3bt99+W7Rp00bUrFlT2NnZifr164tXXnlF/P3330bcLS2re1OiRiNEly6Gbz383/8snRkRERGRAWNqKaueoaays6oZ6ps3gccfN4wrlcA/2w0SERERWRNjaimrXUNNldy6dYbF9LRp2vlpFtNERERUhVjttnlUSQkBNG0KXLigHz95EmjVyjI5EREREVUgFtRUfi5fBvz89GM1awJ37gA1+EeNiIiIqiYu+aDy8Z//GBbTH3wA3LvHYpqIiIiqNFY6ZJpHjwAPD6DQC3hw6RLg62uZnIiIiIjMiDPUZLxTpwA7O/1iOiAAUKtZTBMREVG1wYKajJOeDrRurR9buxY4dw6w4R8rIiIiqj645IOMk5ys//nmTcDb2zK5EBEREVkQC2oyyknXzjj05Je4+ZcGV58ahulpMrRmPU1ERETVEAtqKrOTJ4EOT9lAqRyqDWwBvvkWOHzYcBUIERERUVXHxa5UZosWad8eXpBSqY0TERERVTcsqKnMTp+Wjp85Y948iIiIiKwBC2oqs8BA6Xjz5ubNg4iIiMgasKCmMps+HVAo9GMKhTZOREREVN2woKYya91a+wDi4MFAq1baX/lAIhEREVVX3OWDjNK6NfDVV5bOgoiIiMjyOENNRERERGQCFtRERERERCZgQU1EREREZAIW1EREREREJmBBTURERERkAhbUREREREQmYEFNRERERGQCFtRERERERCZgQU1EREREZAIW1EREREREJmBBTURERERkAhbUREREREQmYEFNRERERGQCFtRERERERCaoYekEqHypVCoAwKVLlyycCREREVHlk19D5ddUpcGCuopJSUkBAISHh1s2ESIiIqJKLCUlBU888USp2sqEEKKC8yEzunfvHg4ePIh69erBwcHB0ukA0H6nFx4ejq+//hp+fn6WTsdq8L4UjfdGGu+LNN4XabwvReO9kcb7oqVSqZCSkoLQ0FC4ubmVqg9nqKsYNzc39O/f39JpSPLz80NgYKCl07A6vC9F472RxvsijfdFGu9L0XhvpPG+oNQz0/n4UCIRERERkQlYUBMRERERmYAFNRERERGRCVhQU4Xz9PTE7Nmz4enpaelUrArvS9F4b6TxvkjjfZHG+1I03htpvC/G4y4fREREREQm4Aw1EREREZEJWFATEREREZmABTURERERkQlYUBMRERERmYAFNRERERGRCVhQkx6VSoVp06bBx8cHCoUCISEh2Lt3b6n63rhxA1FRUXBzc4Orqyv69++PK1euSLZdu3YtmjVrBrlcDn9/f6xYscKgzc6dOzFo0CA0btwYjo6OCAgIwBtvvIF79+6ZcolGs6Z7U9gzzzwDmUyGiRMnlumayoM13pctW7agQ4cOcHJygpubGzp27IgDBw4YdX3Gsrb7sm/fPnTr1g21atWCm5sbgoOD8cUXXxh9faYwx71ZvXo1IiMjUb9+fchkMowYMaLIMe/du4exY8fC09MTTk5O6NatG44fP27s5RnNmu7L/v37MWrUKDRp0gSOjo5o3LgxXn75ZaSmpppyiUaxpvtS2JgxYyCTydC3b9+yXFK5sMb7sm/fPnTv3h01a9aEi4sL2rVrhy1bthhzeZWPICpg8ODBokaNGmLq1KlizZo1okOHDqJGjRri0KFDxfbLzs4W/v7+wsvLSyxevFgsXbpU1KtXT9StW1fcuXNHr+0nn3wiAIiBAweK2NhY8eKLLwoAYtGiRXrtPDw8RMuWLcWsWbPEp59+KiZNmiTs7e1F06ZNRU5OTrlfe0ms6d4UtGPHDuHk5CQAiAkTJpTLtZaFtd2X2bNnC5lMJiIjI8Unn3wiVqxYIcaNGyc+//zzcr3ukljTffnmm2+ETCYTHTt2FCtWrBArV64UXbp0EQDE0qVLy/3aS2KOe9OgQQPh7u4uevfuLWrUqCGGDx8uOaZarRYdO3YUTk5OYs6cOWLlypWiefPmwsXFRVy4cKG8LrlUrOm+tGvXTjRq1Ei89dZb4tNPPxUzZswQLi4uonbt2iI1NbW8LrlUrOm+FHT06FFRo0YNIZfLRVhYmCmXaBRruy/r1q0TMplM9OzZU6xcuVKsXr1aTJ48WSxZsqQ8LtfqsaAmnYSEBAFA7w+/UqkUvr6+okOHDsX2Xbx4sQAgjhw5ooudPXtW2NraihkzZuhiOTk5wsPDw+Avn6FDhwonJyeRkZGhi8XHxxucZ+PGjQKA+PTTT8t6eSaxtntTMIeGDRuKefPmWaSgtrb7cvjwYSGTySxSJBZkbfflmWeeET4+PiI3N1cXe/jwofD19RWtWrUy+jqNYY57I4QQ165dExqNRgghhJOTU5GFwJYtWwQAsW3bNl0sLS1NuLm5iSFDhpT18oxmbffl4MGDQq1WG8QAiLfffrssl2YSa7sv+TQajejQoYMYNWqUaNCggdkLamu7L1evXhUKhUJMmjTJyCuq/FhQk86bb74pbG1tRWZmpl78vffeEwDE9evXi+wbFBQkgoKCDOI9e/YUvr6+us+7d+8WAMTu3bv12v32228CgPjiiy+KzTErK0sAEK+//nppLqncWOu9mTt3rqhfv77IycmxSEFtbfdl0KBBwtvbW6jVaqHRaER2draxl2YSa7svISEhIjAw0GDMkJAQERISUurrKg/muDeFFVcIREZGitq1axsUj2PHjhWOjo5634RUJGu7L0Vxd3cXAwYMKFMfU1jrfdm4caNwcXERqampFimore2+TJs2Tdjb24t79+4JIbSz4PmFeHXBNdSkc+LECTRp0gSurq568eDgYABAUlKSZD+NRoNTp06hffv2BseCg4Nx+fJlZGdn684BwKBtu3btYGNjoztelL///hsAUKtWrZIvqBxZ4725fv06Fi1ahMWLF0OhUBh1Xaaytvuyf/9+BAUFYfny5fD09ISLiwu8vb2xcuVKo6/RGNZ2X7p27YrTp09j1qxZuHTpEi5fvoz58+cjMTERb731ltHXaQxz3Juy5vPEE0/Axkb/n8Pg4GDk5OTgwoULZR7TGNZ2X6Tcv38f9+/fN+vfv9Z4X7KzszFt2jTMnDkTderUMWoMU1nbfdm3bx+aNm2K77//HnXr1oWLiws8PDwwa9YsaDSaMo9XGbGgJp3U1FR4e3sbxPNjN2/elOyXkZEBlUpVqr6pqamwtbWFl5eXXjt7e3t4eHgUeY58ixcvhq2tLSIiIkq+oHJkjffmjTfeQNu2bTF48OCyX1A5sab7cvfuXdy5cwe//vorZs2ahenTp2PLli1o06YNXn31VaxZs8b4Cy0ja7ovADBr1ixERUVh4cKF8Pf3h5+fHxYtWoQdO3ZgwIABxl2kkcxxb8yRT3mztvsi5aOPPkJeXh4GDRpULuOVhjXel3nz5kGhUGDKlClG9S8P1nZfLl68iJSUFIwcORKjRo3C9u3b8eyzz2LBggV4++23yzxeZVTD0gmQ9VAqlXBwcDCIy+Vy3fGi+gEoVV+lUgl7e3vJceRyeZHnAIBNmzZh7dq1eOutt+Dv71/MlZQ/a7s38fHx2LFjBxISEspwFeXPmu7L/fv3AQDp6enYvHmz7h/9iIgItGzZEgsWLMC4ceNKfW2msKb7kj9ekyZNEBERgQEDBkCtViM2NhbDhg3D3r178eSTT5bh6kxjjntjjnzKm7Xdl8J++eUXzJ07F1FRUejevbvJ45WWtd2XCxcuYNmyZfjqq68kxzYXa7sv9+/fh0ajwaJFizBt2jQAwMCBA5GRkYFly5Zh5syZcHFxKfO4lQlnqElHoVBApVIZxHNzc3XHi+oHoFR9FQoF8vLyJMfJzc0t8hyHDh3C6NGj0atXLyxcuLCEKyl/1nRvHj16hEmTJuHFF19EUFBQGa+kfFnTfcn/1c7OTu8nGDY2Nhg0aBD++usvXL9+vVTXZSprui8AMHHiRHz33XfYvHkzBg8ejKFDh2Lfvn3w9vbGa6+9VoYrM5057o058ilv1nZfCjp37hyef/55tGjRAp999plJY5WVtd2X1157DR07dsTAgQPL3Lc8Wdt9ye8zZMgQvfiQIUOgVCpLXM5ZFbCgJh1vb2/JPUbzYz4+PpL93N3d4eDgUKq+3t7eUKvVSEtL02uXl5eH9PR0yXOcPHkSzz33HFq0aIHt27ejRg3z/2DFmu7N559/jvPnz2PcuHG4du2a7gvQru27du0acnJyjLvQMrKm++Lu7g65XA4PDw/Y2trqtc1fFnH37t2yXJ7RrOm+5OXlYe3atQgLC9NbJ2xnZ4dnn30WiYmJRRbmFcEc98Yc+ZQ3a7sv+VJSUtCzZ0/UrFkT33//vdlnGa3pvhw4cAB79uzBa6+9pvd376NHj6BUKnHt2jVkZWWVaUxjWdN9Kdindu3aenFz/91rSSyoSadNmza4cOGCwV8I+csK2rRpI9nPxsYGLVu2RGJiosGxhIQENG7cWPeXcP4YhdsmJiZCo9EYnOPy5cvo3bs3vLy88P3338PZ2dmIKzOdNd2b69ev4+HDh3jqqafQqFEj3RegLbYbNWqEn376ydhLLRNrui82NjZo06YNbt++bVAg5q8J9PT0LNP1Gcua7kt6ejoePXoEtVptMObDhw+h0Wgkj1UUc9ybsuZz/PhxgwenEhIS4OjoiCZNmpR5TGNY230BtH92evbsCZVKhR9//FFy3W1Fs6b7kv8TrgEDBuj93Xvjxg0cOHAAjRo1wrp168o0prGs6b4A2oehAe0LYwoy99+9FmXpbUbIevz+++8G+1rm5uYKPz8/va21/vzzT3H27Fm9vosWLRIAxNGjR3Wxc+fOCVtbWzFt2jRdLCcnR7i7u4u+ffvq9R82bJhwdHQU6enpulhqaqpo3Lix8PHxEVevXi2vyzSKNd2bs2fPil27dhl8ARB9+vQRu3btEjdv3izX6y+KNd0XIYSIiYkRAERsbKwuplQqRePGjUXz5s1Nv+BSsqb78ujRI+Hm5iaaNGkiVCqVrl12draoW7euaNq0aflcdCmZ494UVtx2X5s3bzbYh/r27dvCzc1NDBo0qKyXZzRruy/3798XwcHBwsXFRSQmJhp5Vaazpvvy559/Sv7d6+npKdq3by927dolLl26ZMLVlp413RchhO7foJkzZ+piarVadOrUSbi7u5tt+0lLYkFNeiIjI0WNGjXEm2++KdasWSM6duwoatSoIQ4ePKhrExoaKgp/L5aVlSV8fX2Fl5eX+OCDD0RMTIyoV6+e8PHxEWlpaXptP/74YwFAREREiE8//VS89NJLAoBYuHChXrvWrVsLAOKtt94SX3zxhd7XTz/9VHE3oQjWdG+kwEJvSrSm+5KTkyMCAwOFnZ2dmDp1qli+fLkICgoStra24vvvv6+4myDBmu7LggULBADRtm1bERMTI/7zn/+IZs2aCQDiyy+/rLibUARz3Jtvv/1WzJ8/X8yfP1/Y29uLtm3b6j6fPHlS1+7Ro0fiySefFM7OzmLu3Lni448/FoGBgcLFxUWcO3euYm9EIdZ0X/r37y8AiFGjRhn8/btr164KvQ+FWdN9kWKJfaiFsK77otFoRI8ePYRMJhNjx44VH3/8sXjmmWcEALFmzZqKvRFWggU16VEqlWLq1KmiTp06wsHBQQQFBYk9e/botZH6H1QIIVJSUkRERIRwdXUVzs7Oom/fvuLixYuS54mNjRUBAQHC3t5e+Pr6ipiYGINN4AEU+RUaGlpu11xa1nRvpFiqoLa2+3Lr1i0xfPhw4e7uLhwcHERISIhBPuZgbfclLi5OBAcHCzc3N6FQKERISIjYvn17+VxsGZnj3gwfPrzIvz/Wr1+v1zYjI0OMHj1aeHh4CEdHRxEaGqo3e2cu1nRfGjRoUGS7Bg0alPelF8ua7osUSxXU1nZfsrOzxWuvvSbq1Kkj7O3tRcuWLS3yDbulyIQQovQLRIiIiIiIqCA+lEhEREREZAIW1EREREREJmBBTURERERkAhbUREREREQmYEFNRERERGQCFtRERERERCZgQU1EREREZAIW1EREREREJmBBTURERERkAhbUREREREQmYEFNRERERGQCFtRERERERCZgQU1ERGa3YcMGyGQyXLt2zdKpEBGZjAU1EVE19ttvv2HOnDm4d+9epRyfiMgasKAmIqrGfvvtN8ydO7dCC2qp8V988UUolUo0aNCgQs5LRGROLKiJiKjUHjx4UC7j2NraQi6XQyaTlct4RESWxIKaiEjCjRs3MHr0aPj4+MDBwQGNGjXCK6+8gry8PF2bEydO4Nlnn4WrqyucnZ3Ro0cP/P7773rjzJkzBzKZDJcuXcKIESPg5uaGmjVrYuTIkcjJySnzOW/cuIFRo0ahdu3acHBwQGBgINatW2eQf2nOO2fOHLz55psAgEaNGkEmk+mta84f48yZM3jhhRfw2GOPoVOnTgCAP//8E9HR0QgICIBCoYCHhwciIyP11kQXN35Ra6jL+54W59ixY4iIiICXlxfkcjmaNm2KefPmlbo/ULrfj/LKl4isVw1LJ0BEZG1u3ryJ4OBg3Lt3D2PHjkXTpk1x48YNbN++HTk5ObC3t8fp06fRuXNnuLq64q233oKdnR3WrFmDrl274uDBgwgJCdEbMyoqCo0aNcL777+P48eP47PPPoOXlxcWL15c6nPeunULTz75JGQyGSZOnAhPT0/88MMPGD16NLKysjB58mSDaynuvAMGDMCFCxfw1VdfISYmBrVq1QIAeHp66o0RGRkJf39/vPfeexBCAACOHj2K3377DYMHD0bdunVx7do1rF69Gl27dsWZM2fg6OhY6vHzlfc9Lc6uXbswePBgNG7cGG+++SacnZ1111RaZf39MCVfIrJygoiI9Lz00kvCxsZGHD161OCYRqMRQggRHh4u7O3txeXLl3XHbt68KVxcXESXLl10sdmzZwsAYtSoUXrjPP/888LDw6NM5xw9erTw9vYWd+7c0Ts+ePBgUbNmTZGTk1Pm8y5ZskQAEFevXjU4b/4YQ4YMMThW8Fz5Dh8+LACIzz//vMTx169fbxAv73talPPnzwtHR0fx/PPPC6VSqXcsNze3xP75Svv7YWq+RGT9uOSDiKgAjUaDr7/+Gv369UP79u0NjstkMqjVavz0008IDw9H48aNdce8vb3xwgsv4H//+x+ysrL0+o0fP17vc+fOnZGeno6srKxSnVMIgR07dqBfv34QQuDOnTu6r169eiEzMxPHjx836FvceUur8BgAoFAodP/98OFDpKenw8/PD25ubpJ5lKS872lx3n33XcjlcmzYsAFyuVzvmIODAwBApVKhdu3aRY5lzO9HefxeEJF14pIPIqICbt++jaysLLRo0aLYNjk5OQgICDA41qxZM2g0GqSkpCAwMFAXr1+/vl67xx57DABw9+5dKJXKUp3z3r17iI2NRWxsrGSbtLQ0g1hx53V1dS3yfAU1atTIIKZUKvH+++9j/fr1uHHjhm4pCABkZmaWatyCyvueFnVtKpUK3333HV5++eVir9/BwQG3bt0qNt+y/n6Ux+8FEVknFtRERGZga2srGS9YiBZHo9EAAIYNG4bhw4dLtmnVqlW5nxfQn43O9+qrr2L9+vWYPHkyOnTogJo1a0Imk2Hw4MG6XCuaMdd25coV5OTkoF27diad25jfj/L4vSAi68SCmoioAE9PT7i6uiI5ObnYNo6Ojjh//rzBsXPnzsHGxgb16tUr93O6uLhArVbj6aefLvXYJTF227rt27dj+PDh+PDDD3Wx3Nxcg/2mSzt+ed/ToiiVylLltWzZMpw6dQpr164tMt+K+P0gosqJa6iJiAqwsbFBeHg4vvvuOyQmJhocF0LA1tYWPXv2xDfffKO37dutW7ewadMmdOrUqUw/wi/tOQcOHIgdO3ZIFt63b98u9fkKcnJyAoAyv9jF1tbWYGZ1xYoVUKvVRo1f3ve0KH5+fgCAffv2GRx7+PCh7r9PnTolOeNfMN+K+P2QkpOTg3PnzuHOnTvFxoqLE1HF4gw1EVEh7733Hn766SeEhoZi7NixaNasGVJTU7Ft2zb873//g5ubGxYsWIC9e/eiU6dOiI6ORo0aNbBmzRqoVCp88MEHFXLORYsWIT4+HiEhIRgzZgyaN2+OjIwMHD9+HPv27UNGRkaZz5u/9OHtt9/G4MGDYWdnh379+ukK4aL07dsXX3zxBWrWrInmzZvj8OHD2LdvHzw8PEo1vpTyvqdSXF1dMWLECGzYsAEqlQpdu3ZFdnY24uPjERYWhgkTJgDQFtTDhg0rdqyK+P2QcuTIEXTr1g2zZ8/GnDlziowVFyeiisWCmoiokMcffxwJCQmYNWsW4uLikJWVhccffxzPPvssHB0dAQCBgYE4dOgQZsyYgffffx8ajQYhISH48ssvDfZLLq9z1q5dG0eOHMG8efOwc+dOrFq1Ch4eHggMDDR6L+OgoCDMnz8fn3zyCfbs2QONRoOrV6+WWFAvW7YMtra2iIuLQ25uLp566ins27cPvXr1KtX4Usr7nhbl448/xuOPP46tW7fi66+/hru7Ozp27IjevXsD0K6PPnPmTLEz1EDF/H4QUeUkE3wagoiISOfChQvo2rUrbt68aelUiKiS4BpqIiKiAkpaP01EVBgLaiIiogL++OMPFtREVCZc8kFEREREZALOUBMRERERmYAFNRERERGRCVhQExERERGZgAU1EREREZEJWFATEREREZmABTURERERkQlYUBMRERERmYAFNRERERGRCVhQExERERGZgAU1EREREZEJWFATEREREZmABTURERERkQn+D9ysBixuK5tIAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["alpha=sigma/ci\n","moy_alpha=np.mean(alpha)\n","print('La valeur moyenne du coefficient directeur est : ',moy_alpha)\n","u_alpha_moy=np.std(alpha,ddof=1)/len(alpha)\n","print('Incertitude type sur la valeur moyenne est :', u_alpha_moy)\n","\n","#graphique\n","plt.figure(dpi=120)\n","plt.plot(ci,sigma,'b.',label='expérience')\n","plt.plot(ci,moy_alpha*ci,'r-',label='A=%f c'%moy_alpha)\n","plt.xlabel('concentration $c_i$ en ...')\n","plt.ylabel('$\\sigma$ en ...')\n","plt.legend()\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"CvURo6rUbv-M"},"source":["La loi de Kohlraush est validée pour des concentrations allant jusqu'à 0.020 mol/L comme prévu."]},{"cell_type":"markdown","metadata":{"id":"wPWTlWiiXTA-"},"source":["13. Kohlrausch semble cérifié les points sont très proches d'une droite et aléatoirement répartis autour de celle-ci\n","\n","14 - mesurer $\\sigma_{exp}$ du sérum dilué 20 fois - faire une lecture graphique ou utiliser l'équation pour déterminer $c_{exp}$"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":6,"status":"ok","timestamp":1725566310529,"user":{"displayName":"Physique Chimie Val d'Argens","userId":"11438166584008528880"},"user_tz":-120},"id":"t2o8LVD7XTA-","outputId":"562b7af5-e9ee-48e6-c791-b7a2476d00bb"},"outputs":[{"output_type":"stream","name":"stdout","text":["cexp= 0.007960810544121401 mol/L\n"]}],"source":["#nouveau paramètres\n","sigma_exp=858e-6\n","#calcul de la concentration du sérum par lexpérience\n","c_exp=(sigma_exp)/moy_alpha\n","print('cexp=',c_exp,'mol/L')"]},{"cell_type":"markdown","metadata":{"id":"nmeMyD6ndvi2"},"source":["##Traitement des incertitudes\n","\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":231,"status":"ok","timestamp":1725566348980,"user":{"displayName":"Physique Chimie Val d'Argens","userId":"11438166584008528880"},"user_tz":-120},"id":"89K_3CoueAFC","outputId":"a025536c-1f60-410b-d94d-54a5a7ede387"},"outputs":[{"output_type":"stream","name":"stdout","text":["Incertitude type sur sigma : 6.290000000000001e-06\n","incertitude type sur c_exp 8.321813066937381e-05\n","incertitude type sur c_exp 0.0016643626133874764\n"]}],"source":["#incertitude type sur sigma\n","u_sigma_exp=.5/100*sigma_exp+2*1e-6\n","print('Incertitude type sur sigma :',u_sigma_exp)\n","#incertitude type sur alpha\n","#déjà calculée plus haut\n","\n","#incertitude type composée sur c_exp\n","u_c_exp=c_exp*np.sqrt((u_sigma_exp/sigma_exp)**2+(u_alpha_moy/moy_alpha)**2)\n","print('incertitude type sur c_exp',u_c_exp)\n","\n","#incertitude type composée sur c_serum\n","u_c_serum=20*c_exp*np.sqrt((u_sigma_exp/sigma_exp)**2+(u_alpha_moy/moy_alpha)**2)\n","print('incertitude type sur c_exp',u_c_serum)"]},{"cell_type":"markdown","metadata":{"id":"FMYIWBt6fEVo"},"source":["Zscore"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":4,"status":"ok","timestamp":1725566310529,"user":{"displayName":"Physique Chimie Val d'Argens","userId":"11438166584008528880"},"user_tz":-120},"id":"j02lNYZWfFv0","outputId":"25c2f4da-e480-4cf6-b8e8-0139e1d987a4"},"outputs":[{"output_type":"stream","name":"stdout","text":["3.1315916761907565\n"]}],"source":["#calcul de z\n","z=(c_exp-c_theo)/u_c_exp\n","print(z)"]},{"cell_type":"markdown","metadata":{"id":"g1_OLI2ugLX5"},"source":["Les deux valeurs sont non compatibles, ce qui peut sembler surprenant.\n","La valeurs de la tolérence donnée par le constructeur du conductimètre est très faible."]}],"metadata":{"colab":{"provenance":[{"file_id":"1bn4qGWazlaTfJu2kFbmUdN5ozsRJNAga","timestamp":1726423751068},{"file_id":"1WQy_kybg6PveJPtrq0vMQy6qczw0hJDp","timestamp":1725540431351}]},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.7.1"}},"nbformat":4,"nbformat_minor":0}